Home About us Contact | |||
Fusion Tags (fusion + tag)
Selected AbstractsInexpensive and Generic Affinity Purification of Recombinant Proteins Using a Family 2a CBM Fusion TagBIOTECHNOLOGY PROGRESS, Issue 5 2004Beatriz Rodriguez The selective binding of the family 2a carbohydrate binding module (CBM2a) of xylanase 10A of the soil bacterium Cellulomonas fimi to a variety of cellulosic substrates is shown to provide a new, cost-effective affinity chromatography system for purification of recombinant protein. Genetic linkage of CBM2a to a target protein, in this case protein A from Staphylococcus aureus, results in a fusion protein that binds strongly to the particulate-cellullose resin Avicel PH101 and retains the biological activity of the fusion partner. Affinity purification of protein A-CBM2a from the supernatant of a recombinant E. coli JM101 culture results in a product purity of greater than 95% and a product concentration factor of 34 ± 3. Measured column parameters are combined with one-dimensional equations governing continuity and intraparticle diffusion to predict product breakthrough curves with good accuracy over the range of realistic operating conditions. Peak spreading within the column is controlled by intraparticle diffusion for CBM2a and by a combination of film mass transfer and intraparticle diffusion for the larger protein A-CBM2a fusion protein. [source] Bridging the gap: A GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-terminiPROTEIN SCIENCE, Issue 4 2010Jennifer M. Hsieh Abstract Low expression and instability during isolation are major obstacles preventing adequate structure-function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C-terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C-termini (Cin) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C-termini (Cout) to Cin ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted Cout topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein-detergent complex was identified using an extended fluorescence-detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure-function studies. Five MPs were successfully cleaved from the GFP tag by site-specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with Cout topology, yielding sufficient protein suitable for structure-function studies and are superior to expression and purification in the absence GFP fusion tagging. [source] Direct measurement of the kinetics of CBM9 fusion-tag bioprocessing using luminescence resonance energy transferBIOTECHNOLOGY PROGRESS, Issue 3 2009Mojgan Kavoosi Abstract The economics of affinity-tagging technologies, particularly at preparative scales, depends in part on the cost and efficiency of the bioprocessing step used to remove the affinity tag and obtain the final purified product (Lowe et al., J Biochem Biophys Methods. 2001;49:561,574). When CBM9, the family 9 cellulose binding module from Thermotoga maritima, serves as the affinity tag, the overall efficiency of tag removal is a function of the choice of processing enzyme and the local structure of the cleavage site, most notably the linker sequence flanking the bioprocessing recognition site on the tag side. A novel spectroscopic method is reported and used to rapidly and accurately measure CBM9 fusion-tag bioprocessing kinetics and their dependence on the choice of linker sequence. The assay monitors energy transfer between a lanthanide-based donor bound to the CBM9 tag and an acceptor fluorophore presented on the target protein or peptide. Enzyme-catalyzed cleavage of the fusion tag terminates this resonance energy transfer, resulting in a change in fluorescence intensity that can be monitored to quantify substrate concentration over time. The assay is simple, fast and accurate, providing kcat/KM values that contain standard errors of less than 3%. As a result, both substantial and subtle differences in bioprocessing kinetics can be measured and used to guide bioproduct design. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorptionBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005N. Abdullah Abstract Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His6 by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His6 to MBP was 16 h, as judged by SDS,PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions. © 2005 Wiley Periodicals, Inc. [source] Process intensification for the removal of poly-histidine fusion tags from recombinant proteins by an exopeptidaseBIOTECHNOLOGY PROGRESS, Issue 1 2010Wen-Hui K. Kuo Abstract This study describes the use of a hexa-histidine tagged exopeptidase for the cleavage of hexa-histidine tags from recombinant maltose binding protein (MBP) when both tagged species are bound to an immobilized metal affinity chromatography (IMAC) matrix. On-column exopeptidase cleavage only occurred when the cleavage buffer contained an imidazole concentration of 50 mM or higher. Two strategies were tested for the on-column tag cleavage by dipeptidylaminopeptidase (DAPase): (i) a post-load wash was performed after sample loading using cleavage buffers containing varying imidazole concentrations and (ii) a post-load wash was omitted following sample loading. In the presence of 50 mM imidazole, 46% of the originally adsorbed hexa-histidine tagged MBP was cleaved, released from the column, and recovered in a sample containing 100% native (i.e., completely detagged) MBP. This strategy renders the subsequent purification steps unnecessary as any tagged contaminants remained bound to the column. At higher imidazole concentrations, binding of both hexa-histidine tagged MBP and DAPase to the column was minimized, leading to characteristics of cleavage more closely resembling that of a batch cleavage. An on-column cleavage yield of 93% was achieved in the presence of 300 mM imidazole, albeit with contamination of the detagged protein with tag fragments and partially tagged MBP. The success of the on-column exopeptidase cleavage makes the integration of the poly-histidine tag removal protocol within the IMAC protein capture step possible. The many benefits of using commercially available exopeptidases, such as DAPase, for poly-histidine tag removal can now be combined with the on-column tag cleavage operation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Immobilized Metal Affinity Chromatography without Chelating Ligands: Purification of Soybean Trypsin Inhibitor on Zinc Alginate BeadsBIOTECHNOLOGY PROGRESS, Issue 1 2002Munishwar N. Gupta Immobilized metal affinity chromatography (IMAC) is a widely used technique for bioseparation of proteins in general and recombinant proteins with polyhistidine fusion tags in particular. An expensive and critical step in this process is coupling of a chelating ligand to the chromatographic matrix. This chelating ligand coordinates metal ions such as Cu2+, Zn2+, and Ni2+, which in turn bind proteins. The toxicity of chemicals required for coupling and their slow release during the separation process are of considerable concern. This is an important issue in the context of purification of proteins/enzymes which are used in food processing or pharmaceutical purposes. In this work, a simpler IMAC design is described which should lead to a paradigm shift in the application of IMAC in separation. It is shown that zinc alginate beads (formed by chelating alginate with Zn2+ directly) can be used for IMAC. As "proof of concept", soybean trypsin inhibitor was purified 18-fold from its crude extract with 90% recovery of biological activity. The dynamic binding capacity of the packed bed was 3919 U mL -1, as determined by frontal analysis. The media could be regenerated with 8 M urea and reused five times without any appreciable loss in its binding capacity. [source] Design of Affinity Tags for One-Step Protein Purification from Immobilized Zinc ColumnsBIOTECHNOLOGY PROGRESS, Issue 1 2000Richard S. Pasquinelli Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to be superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. For example, almost all Escherichiacoli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper we have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions. [source] |