Fuel Combustion (fuel + combustion)

Distribution by Scientific Domains

Kinds of Fuel Combustion

  • fossil fuel combustion


  • Selected Abstracts


    A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission

    ECOLOGY LETTERS, Issue 10 2009
    Lingli Liu
    Abstract Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO2, CH4 and N2O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO2 exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH4 emission by 97%, reduced CH4 uptake by 38% and increased N2O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO2 reduction could be largely offset (53,76%) by N stimulation of global CH4 and N2O emission from multiple ecosystems. [source]


    Challenges and opportunities in soil organic matter research

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2009
    R. Lal
    Summary Soil organic matter (SOM) can be a source or sink for atmospheric CO2 depending on land use, and management of soil, vegetation and water resources. SOM is a source of atmospheric CO2, with the use of extractive farming practices that lead to a negative nutrient balance and exacerbate soil degradation. The historic loss of C from the SOM pool between the 1850s and 2000 is estimated at 78 ± 12 Gt compared with the emission of 270 ± 30 Gt from fossil fuel combustion. Despite its numerous direct and ancillary benefits, enhancing the SOM pool is a major challenge, especially in impoverished and depleted soils in harsh tropical climates. In addition to biophysical factors, there are also numerous social, economic and political constraints that limit increase in SOM pools. Conversion of plough-tillage to no-till farming, an important practice to enhance the SOM pool, is constrained by the limited access to herbicides and seed drill, and the competing uses of crop residues. Yet, enhancing the SOM pool is essential to restoring degraded soils, advancing food security and improving the environment. Important subjects among researchable topics include: assessing the rate of SOM accretion for a wide range of land use and management practices with reference to a baseline; evaluating the importance of biochar; measuring and predicting SOM at landscape and extrapolation to regional scale; establishing relationships between SOM and soil quality and agronomic productivity; determining on- and off-site effects of crop residues removal for ethanol/biofuel production; determining the fate of C in SOM translocated by erosional processes; evaluating nutrient requirements for increasing SOM in croplands; validating predictive models in tropical environments; and developing methodology for trading C credits. [source]


    Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey

    INDOOR AIR, Issue 2 2010
    B. Pekey
    Abstract, This study presents indoor/outdoor PM2.5 and PM10 concentrations measured during winter and summer in 15 homes in Kocaeli, which is one of the most industrialized areas in Turkey. Indoor and outdoor PM2.5 and PM10 mass concentrations and elemental composition were determined using an X-ray fluorescence spectrometer. Quantitative information was obtained on mass concentrations and other characteristics such as seasonal variation, indoor/outdoor (I/O) ratio, PM2.5/PM10 ratio, correlations and sources. Average indoor and outdoor PM2.5 concentrations were 29.8 and 23.5 ,g/m3 for the summer period, and 24.4 and 21.8 ,g/m3 for the winter period, respectively. Average indoor and outdoor PM10 concentrations were 45.5 and 59.9 ,g/m3 for the summer period, and 56.9 and 102.3 ,g/m3 for the winter period, respectively. A varimax rotated factor analysis (FA) was performed separately on indoor and outdoor datasets in an effort to identify possible heavy metal sources of PM2.5 and PM10 particle fractions. FA of outdoor data produced source categories comprising polluted soil, industry, motor vehicles, and fossil fuel combustion for both PM fractions, while source categories determined for indoor data for both PM2.5 and PM10 comprised industry, polluted soil, motor vehicles, and smoking, with an additional source category of cooking activities detected for the PM2.5 fraction. Practical Implications In buildings close to industrial areas or traffic arteries, outdoor sources may have an important effect on indoor air pollution. Therefore, indoor and outdoor investigations should be conducted simultaneously to assess the relationship between indoor and outdoor pollution. This study presents the simultaneous measurement of PM fractions (PM2.5 and PM10) and their elemental compositions to determine the sources of respirable PM and the heavy metals bound to these particles in indoor air. Factor analysis of indoor data indicated that the contribution of outdoor pollutant sources to indoor pollution was about 70%, making these sources the most significant for indoor heavy metal pollution, wheras other sources of indoor pollution included smoking and cooking activities. [source]


    Hydrogen as burner fuel: modelling of hydrogen,hydrocarbon composite fuel combustion and NOx formation in a small burner

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2005
    Mustafa Ilbas
    Abstract The objective of this work is to investigate numerically the turbulent non-premixed hydrogen (H2) and hydrogen,hydrocarbon flames in a small burner. Numerical studies using Fluent code were carried out for air-staged and non-staged cases. The effects of fuel composition from pure hydrogen to natural gas (100%H2, 70%H2+30%CH4, 10%H2+90%CH4, and 100%CH4) were also investigated. The predictions are validated and compared against the experimental results previously obtained and results from the literature. Turbulent diffusion flames are investigated numerically using a finite volume method for the solution of the conservation equations and reaction equations governing the problem. Although, three different turbulence models were tested, the standard k,, model was used for the modelling of the turbulence phenomena in the burner. The temperature and major pollutant concentrations (CO and NOx) distributions are in good agreement with the existing experimental results. Air staging causes rich and lean combustion regions thus lower NOx emissions through the combustor exit. Blending hydrogen with methane causes considerable reduction in temperature levels and thus NO emissions. Increasing the mixture ratio from stoichiometric to leaner mixtures also decreases the temperature and thus NO emissions. Hydrogen may be considered a good alternative fuel for burners, as its use reduces the emission of pollutants, and as it is a renewable synthetic fuel. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Emission of trace toxic metals during pulverized fuel combustion of Czech coals

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2003
    P. Danihelka
    Abstract A study of the trace elements emission (As, Se, Cd, Co, Cr, Cu, Zn, Hg, Tl, Pb, Ni, Sn, Sb, V, Mn and Fe) from pulverized coal combustion has been made at six heating and power stations situated in the Czech Republic. The amount of chlorine in coal has considerable influence on volatilization of some elements such as Zn, Cu, Pb, Hg and Tl, which is explained by the formation of thermodynamically stable compounds of these elements with chlorine. Generally, the affinities for Cl follows the order Tl > Cu > Zn > Pb > Co > Mn > Sn > Hg. The experimental data indicates enrichment of some of the trace toxic elements in the emissions (Cu, Zn, As, Se, Cd, Sn, Sb, Hg and Pb) and good agreement was obtained by thermodynamic equilibrium calculations with a few exceptions. In the case of Fe, Mn, Co, Cr and Sn calculated values are overestimated in the bottom ash and there are zero predicted amounts of these elements in the fly ash. In comparison, the results from experiments show up to 80% of these elements retained in fly ash. This implies that there exist additional steps leading to the enrichment by Fe, Mn, Co, Cr and Sn of small particles. Such mechanisms could include the ejection during devolatilization of small inorganic particles from the coal of bottom ash particles, or disintegration of the char containing these metals to small particles of fly ash. On the other hand, there are slightly overestimated or similar values of relative enrichment factors for As, V, Cu, Cd, Sb, Tl and Pb in the fly ashes and zero predicted values for bottom ashes. Our experimental results show about 5% or less of these elements are retained in bottom ashes, so they probably remain in the bottom ash inside unburned parts of coal. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Cement Manufacture and the Environment: Part I: Chemistry and Technology

    JOURNAL OF INDUSTRIAL ECOLOGY, Issue 1 2002
    Hendrik G. van Oss
    Summary Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials per ton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which cal-cination of limestone and the combustion of fuels each con-tribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion ar-ticle (part II), some of the environmental challenges and op-portunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States. [source]


    Carbon sequestration in soils of central Asia,

    LAND DEGRADATION AND DEVELOPMENT, Issue 6 2004
    R. Lal
    Abstract Problems of frequent drought stress, low soil organic carbon (SOC) concentration, low aggregation, susceptibility to compaction, salinization and accelerated soil erosion in dry regions are accentuated by removal of crop residues, mechanical methods of seedbed preparation, summer clean fallowing and overgrazing, and excessive irrigation. The attendant soil degradation and desertification lead to depletion of SOC, decline in biomass production, eutrophication/pollution of waters and emission of greenhouse gases. Adoption of conservation agriculture, based on the use of crop residue mulch and no till farming, can conserve water, reduce soil erosion, improve soil structure, enhance SOC concentration, and reduce the rate of enrichment of atmospheric CO2. The rate of SOC sequestration with conversion to conservation agriculture, elimination of summer fallowing and growing forages/cover crops may be 100 to 200,kg,ha,1,y,1 in coarse-textured soils of semiarid regions and 150 to 300,kg,ha,1,y,1 in heavy-textured soils of the subhumid regions. The potential of soil C sequestration in central Asia is 10 to 22,Tg,C,y,1 (16±8,Tg,C,y,1) for about 50 years, and it represents 20,per,cent of the CO2 emissions by fossil fuel combustion. Copyright © 2004 John Wiley & Sons, Ltd. [source]