Frost Resistance (frost + resistance)

Distribution by Scientific Domains


Selected Abstracts


Changes in Frost Resistance of Wheat Young Ears with Development During Jointing Stage

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2008
X. Zhong
Abstract During the jointing stage, the frost resistance of young ears (FRYE) was tested each day for the main stem, and also for the first, second and third tillers of the wheat cultivars Jinmai 47 and Jing 411. At the same time, the developmental progression of young ears (DPYE) of the same four shoots was also recorded each day. In the shoots of both cultivars, FRYE decreased as development advanced through the jointing stage. FRYE dropped off particularly sharply at the point when the anther connective tissue formation phase (ACFP) started. Shoots developing later, though with lower levels of soluble sugar, tended to suffer less from frost injury than those developing earlier. Frost resistance of 12 cultivars (six early- and six late-maturing) was evaluated at ACFP. The results indicate that only one cultivar (Xin 11) is frost resistant, with no significant differences appearing among the other 11 cultivars. The results suggest that DPYE is an important factor affecting FRYE. Evaluation of frost resistance of wheat cultivars should thus be performed at the same phase to obtain a true measure of frost resistance. The early ACFP phase is suggested as being the most appropriate one for frost resistance evaluation. [source]


Cold tolerance in obligate and cyclical parthenogens of the peach-potato aphid, Myzus persicae

ECOLOGICAL ENTOMOLOGY, Issue 4 2004
Christoph Vorburger
Abstract., 1. Many aphids form mixed populations of cyclical and obligate parthenogens. This is puzzling, because all else being equal, obligate parthenogens should outcompete cyclical parthenogens due to the two-fold cost of sex. Yet cyclical parthenogens produce frost-resistant, diapausing eggs in autumn, while obligate parthenogens spend the winter as active stages. Frost resistance thus represents a short-term advantage to sexual reproduction mediated by winter temperatures, which may promote this coexistence. 2. Because obligate parthenogens overwinter as active stages, there may be selection for increased cold tolerance compared to cyclical parthenogens. This has the potential to gradually erode the advantage of sexually producing eggs. 3. Four obligately and four cyclically parthenogenetic lines of Myzus persicae (Sulzer) (Hemiptera: Aphididae) were collected from each of two areas differing in winter severity, and their survival after exposure to a severe experimental frost (14 h at ,9 °C), as well as their reproductive performance at a low (10 °C) and a high (20 °C) temperature were compared. 4. There was significant variation among lines in survival after the experimental frost, but this variation was neither related to their reproductive mode, nor to their area of origin. Similarly, neither reproductive mode nor origin had a significant effect on reproductive performance, independent of temperature. The average slope of the response to variation in temperature was also similar for both reproductive modes, despite the fact that slopes differed significantly among lines. 5. Within the limits of extrapolating from laboratory experiments, it is concluded that in M. persicae, the active stages of obligate parthenogens are not better adapted to cold temperatures than those of cyclical parthenogens. [source]


Changes in Frost Resistance of Wheat Young Ears with Development During Jointing Stage

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2008
X. Zhong
Abstract During the jointing stage, the frost resistance of young ears (FRYE) was tested each day for the main stem, and also for the first, second and third tillers of the wheat cultivars Jinmai 47 and Jing 411. At the same time, the developmental progression of young ears (DPYE) of the same four shoots was also recorded each day. In the shoots of both cultivars, FRYE decreased as development advanced through the jointing stage. FRYE dropped off particularly sharply at the point when the anther connective tissue formation phase (ACFP) started. Shoots developing later, though with lower levels of soluble sugar, tended to suffer less from frost injury than those developing earlier. Frost resistance of 12 cultivars (six early- and six late-maturing) was evaluated at ACFP. The results indicate that only one cultivar (Xin 11) is frost resistant, with no significant differences appearing among the other 11 cultivars. The results suggest that DPYE is an important factor affecting FRYE. Evaluation of frost resistance of wheat cultivars should thus be performed at the same phase to obtain a true measure of frost resistance. The early ACFP phase is suggested as being the most appropriate one for frost resistance evaluation. [source]


Plant survival after freezing in wheat ,Cappelle Desprez' (,Bezostaya 1') intervarietal chromosome substitution lines

PLANT BREEDING, Issue 2 2008
G. Ganeva
Abstract The effect of individual chromosomes of the wheat variety ,Bezostaya 1' on plant resistance to low temperatures was studied using the available set of intervarietal ,Cappelle Desprez' (,Bezostaya 1') chromosome substitution lines. The number of plants surviving after freezing at ,12, ,15 and ,17°C was determined for both parents and lines in trials in 2004/2005 and 2005/2006. Significant differences between the three temperature treatments and between lines were found, implying that two factors, the level of temperature stress and chromosome substitutions, were influencing plant survival. Improved frost resistance in both trials was associated with genes located on five chromosomes: 5A, 2D, 4A, 5D and 6A. An increase in the plant frost resistance because of the effects of 7A and 1A chromosomes was also observed in the 2005/2006 trial, when the overall autumn and winter (January) temperatures were lower than in 2004/2005. [source]