Home About us Contact | |||
Free-air CO2 Enrichment (free-air + co2_enrichment)
Selected AbstractsEffects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performanceAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2010Leanne M. Vigue 1Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as the aspen leaf beetle Chrysomela crotchi Brown. 2The present study aimed to relate genetic- and atmospheric-based variation in aspen phytochemistry to C. crotchi performance (larval development time, adult mass, survivorship). The experiment was conducted at the Aspen Free-Air CO2 Enrichment (FACE) site in northern Wisconsin. Beetles were reared on three aspen genotypes under elevated CO2 and/or O3. Leaves were collected to determine chemical characteristics. 3The foliage exhibited significant variation in nitrogen, condensed tannins and phenolic glycosides among genotypes. CO2 and O3, however, had little effect on phytochemistry. Nonetheless, elevated CO2 decreased beetle performance on one aspen genotype and had inconsistent effects on beetles reared on two other genotypes. Elevated O3 decreased beetle performance, especially for beetles reared on an O3 -sensitive genotype. Regression analyses indicated that phenolic glycosides and nitrogen explain a substantial amount (27,45%) of the variation in herbivore performance. 4By contrast to the negative effects that are typically observed with generalist herbivores, aspen leaf beetles appear to benefit from phenolic glycosides, chemical components that are largely genetically-determined in aspen. The results obtained in the present study indicate that host genetic variation and atmospheric concentrations of greenhouse gases will be important factors in the performance of specialist herbivores, such as C. crotchi, in future climates. [source] Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]PLANT CELL & ENVIRONMENT, Issue 11 2008PINGHUA LI ABSTRACT A Free-Air CO2 Enrichment (FACE) experiment compared the physiological parameters, transcript and metabolite profiles of Arabidopsis thaliana Columbia-0 (Col-0) and Cape Verde Island (Cvi-0) at ambient (,0.375 mg g,1) and elevated (,0.550 mg g,1) CO2 ([CO2]). Photoassimilate pool sizes were enhanced in high [CO2] in an ecotype-specific manner. Short-term growth at elevated [CO2] stimulated carbon gain irrespective of down-regulation of plastid functions and altered expression of genes involved in nitrogen metabolism resembling patterns observed under N-deficiency. The study confirmed well-known characteristics, but the use of a time course, ecotypic genetic differences, metabolite analysis and the focus on clusters of functional categories provided new aspects about responses to elevated [CO2]. Longer-term Cvi-0 responded by down-regulating functions favouring carbon accumulation, and both ecotypes showed altered expression of genes for defence, redox control, transport, signalling, transcription and chromatin remodelling. Overall, carbon fixation with a smaller commitment of resources in elevated [CO2] appeared beneficial, with the extra C only partially utilized possibly due to disturbance of the C : N ratio. To different degrees, both ecotypes perceived elevated [CO2] as a metabolic perturbation that necessitated increased functions consuming or storing photoassimilate, with Cvi-0 emerging as more capable of acclimating. Elevated [CO2] in Arabidopsis favoured adjustments in reactive oxygen species (ROS) homeostasis and signalling that defined genotypic markers. [source] Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L.GLOBAL CHANGE BIOLOGY, Issue 3 2010DANIELLE A. WAY Abstract For herbaceous species, elevated CO2 often increases seed production but usually leads to decreased seed quality. However, the effects of increased atmospheric CO2 on tree fecundity remain uncertain, despite the importance of reproduction to the composition of future forests. We determined how seed quantity and quality differed for pine trees grown for 12 years in ambient and elevated (ambient+200 ,L L,1) CO2, at the Duke Forest free-air CO2 enrichment (FACE) site. We also compared annual reproductive effort with yearly measurements of aboveground net primary productivity (ANPP), precipitation (P), potential evapotranspiration (PET) and water availability [precipitation minus potential evapotranspiration (P,PET)] to investigate factors that may drive interannual variation in seed production. The number of mature, viable seeds doubled per unit basal area in high-CO2 plots from 1997 to 2008 (P<0.001), but there was no CO2 effect on mean seed mass, viability, or nutrient content. Interannual variation in seed production was positively related to ANPP, with a similar percentage of ANPP diverted to reproduction across years. Seed production was negatively related to PET (P<0.005) and positively correlated with water availability (P<0.05), but showed no relationship with precipitation (P=0.88). This study adds to the few findings that, unlike herbaceous crops, woody plants may benefit from future atmospheric CO2 by producing larger numbers of seeds without suffering degraded seed quality. Differential reproductive responses between functional groups and species could facilitate woody invasions or lead to changes in forest community composition as CO2 rises. [source] Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fieldsGLOBAL CHANGE BIOLOGY, Issue 9 2006XUNHUA ZHENG Abstract Using the free-air CO2 enrichment (FACE) techniques, we carried out a 3-year mono-factorial experiment in temperate paddy rice fields of Japan (1998,2000) and a 3-year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001,2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol,1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen-poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen-rich paddy rice ecosystems. [source] Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swardsGLOBAL CHANGE BIOLOGY, Issue 8 2004Manuel K. Schneider Abstract Effects of free-air carbon dioxide enrichment (FACE, 60 Pa pCO2) on plant growth as compared with ambient pCO2 (36 Pa) were studied in swards of Lolium perenne L. (perennial ryegrass) at two levels of N fertilization (14 and 56 g m,2 a,1) from 1993 to 2002. The objectives were to determine how plant growth responded to the availability of C and N in the long term and how the supply of N to the plant from the two sources of N in the soil, soil organic matter (SOM) and mineral fertilizer, varied over time. In three field experiments, 15N-labelled fertilizer was used to distinguish the sources of available N. In 1993, harvestable biomass under elevated pCO2 was 7% higher than under ambient pCO2. This relative pCO2 response increased to 32% in 2002 at high N, but remained low at low N. Between 1993 and 2002, the proportions and amounts of N in harvestable biomass derived from SOM (excluding remobilized fertilizer) were, at high N, increasingly higher at elevated pCO2 than at ambient pCO2. Two factorial experiments confirmed that at high N, but not at low N, a higher proportion of N in harvestable biomass was derived from soil (including remobilized fertilizer) following 7 and 9 years of elevated pCO2, when compared with ambient pCO2. It is suggested that N availability in the soil initially limited the pCO2 response of harvestable biomass. At high N, the limitation of plant growth decreased over time as a result of the stimulated mobilization of N from soil, especially from SOM. Consequently, harvestable biomass increasingly responded to elevated pCO2. The underlying mechanisms which contributed to the increased mobilization of N from SOM under elevated pCO2 are discussed. This study demonstrated that there are feedback mechanisms in the soil which are only revealed during long-term field experiments. Such investigations are thus, a prerequisite for understanding the responses of ecosystems to elevated pCO2 and N supply. [source] Above- and below-ground responses of C3,C4 species mixtures to elevated CO2 and soil water availabilityGLOBAL CHANGE BIOLOGY, Issue 3 2003JUSTIN D. DERNER Abstract We evaluated the influences of CO2[Control, , 370 µmol mol,1; 200 µmol mol,1 above ambient applied by free-air CO2 enrichment (FACE)] and soil water (Wet, Dry) on above- and below-ground responses of C3 (cotton, Gossypium hirsutum) and C4 (sorghum, Sorghum bicolor) plants in monocultures and two density mixtures. In monocultures, CO2 enrichment increased height, leaf area, above-ground biomass and reproductive output of cotton, but not sorghum, and was independent of soil water treatment. In mixtures, cotton, but not sorghum, above-ground biomass and height were generally reduced compared to monocultures, across both CO2 and soil water treatments. Density did not affect individual plant responses of either cotton or sorghum across the other treatments. Total (cotton + sorghum) leaf area and above-ground biomass in low-density mixtures were similar between CO2 treatments, but increased by 17,21% with FACE in high-density mixtures, due to a 121% enhancement of cotton leaf area and a 276% increase in biomass under the FACE treatment. Total root biomass in the upper 1.2 m of the soil was not influenced by CO2 or by soil water in monoculture or mixtures; however, under dry conditions we observed significantly more roots at lower soil depths (> 45 cm). Sorghum roots comprised 81,85% of the total roots in the low-density mixture and 58,73% in the high-density mixture. CO2 -enrichment partly offset negative effects of interspecific competition on cotton in both low- and high-density mixtures by increasing above-ground biomass, with a greater relative increase in the high-density mixture. As a consequence, CO2 -enrichment increased total above-ground yield of the mixture at high density. Individual plant responses to CO2 enrichment in global change models that evaluate mixed plant communities should be adjusted to incorporate feedbacks for interspecific competition. Future field studies in natural ecosystems should address the role that a CO2 -mediated increase in C3 growth may have on subsequent vegetation change. [source] Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungiGLOBAL CHANGE BIOLOGY, Issue 3 2001Matthias C. Rillig Summary While soil biota and processes are becoming increasingly appreciated as important parameters for consideration in global change studies, the fundamental characteristic of soil structure is a neglected area of research. In a sorghum [Sorghum bicolor (L.) Moench] field experiment in which CO2[supplied using free-air CO2 enrichment (FACE) technology] was crossed factorially with an irrigation treatment, soil aggregate (1,2 mm) water stability increased in response to elevated CO2. Aggregate water stability was increased by 40% and 20% in response to CO2, at ample and limited water supply treatments, respectively. Soil hyphal lengths of arbuscular mycorrhizal fungi (AMF) increased strongly (with a threefold increase in the dry treatment) in response to CO2, and the concentrations of one fraction (easily extractable glomalin, EEG) of the AMF-produced protein glomalin were also increased. Two fractions of glomalin, and AMF hyphal lengths were all positively correlated with soil aggregate water stability. The present results further support the hypothesis that AMF can become important in global change scenarios. Although in this field study a causal relationship between hyphal length, glomalin and aggregate stability cannot be demonstrated, the present data do suggest that AMF could mediate changes in soil structure under elevated CO2. This could be of great importance in agricultural systems threatened by erosional soil loss. [source] Transient ecosystem responses to free-air CO2 enrichment (FACE): experimental evidence and methods of analysisNEW PHYTOLOGIST, Issue 1 2001Yiqi Luo First page of article [source] Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilizationPLANT CELL & ENVIRONMENT, Issue 11 2008JOHN E. DRAKE ABSTRACT Forest ecosystems release large amounts of carbon to the atmosphere from fine-root respiration (Rr), but the control of this flux and its temperature sensitivity (Q10) are poorly understood. We attempted to: (1) identify the factors limiting this flux using additions of glucose and an electron transport uncoupler (carbonyl cyanide m-chlorophenylhydrazone); and (2) improve yearly estimates of Rr by directly measuring its Q10in situ using temperature-controlled cuvettes buried around intact, attached roots. The proximal limits of Rr of loblolly pine (Pinus taeda L.) trees exposed to free-air CO2 enrichment (FACE) and N fertilization were seasonally variable; enzyme capacity limited Rr in the winter, and a combination of substrate supply and adenylate availability limited Rr in summer months. The limiting factors of Rr were not affected by elevated CO2 or N fertilization. Elevated CO2 increased annual stand-level Rr by 34% whereas the combination of elevated CO2 and N fertilization reduced Rr by 40%. Measurements of in situ Rr with high temporal resolution detected diel patterns that were correlated with canopy photosynthesis with a lag of 1 d or less as measured by eddy covariance, indicating a dynamic link between canopy photosynthesis and root respiration. These results suggest that Rr is coupled to daily canopy photosynthesis and increases with carbon allocation below ground. [source] The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactionsPLANT CELL & ENVIRONMENT, Issue 3 2007ELIZABETH A. AINSWORTH ABSTRACT This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2]. [source] Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open-air CO2 enrichmentPLANT CELL & ENVIRONMENT, Issue 12 2001Y. Takeuchi Abstract Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free-air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 1·5 and 1·6 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 2·6 and 2·9 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud-free days (PPFDday,sat) around the lowermost branches was 16·8 ± 0·8 and 8·7 ± 0·2% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light-response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud-free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid- and lower canopy was probably related to significant down-regulation of photosynthetic capacity; there was no down-regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole-canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation. [source] |