Free Radical Species (free + radical_species)

Distribution by Scientific Domains


Selected Abstracts


Zonisamide Reduces the Increase in 8-Hydroxy-2,-Deoxyguanosine Levels Formed During Iron-Induced Epileptogenesis in the Brains of Rats

EPILEPSIA, Issue 9 2000
M. Komatsu
Summary: Purpose: To examine the change of 8,-hydroxy-2,-deoxyguanosine (8-OHdG) levels, which are used as a marker for oxidative DNA damage, in iron-induced epileptogenic foci of the rat cerebrum. Method: Male Wistar rats were given a cortical injection of ferric chloride, and their 8-OHdG levels were determined over time. Additional animals were pretreated with the antiepileptic drug zonisamide (ZNS) before the ferric chloride injection, and their 8-OHdG levels were compared with the nonpretreated rats. Results: Fifteen minutes after ferric chloride solution injection, the level of 8-OHdG increased, reaching a maximum 30 minutes after injection. Sixty minutes after injection, the levels coincided with those of controls. ZNS, in concentrations of 50 and 100 mg/kg body weight, prevented the increase of 8-OHdG levels within the cerebrum 30 minutes after iron solution injection. Conclusions: These results indicate that the formation of iron-induced epileptogenic foci in rats is related to DNA-damage-induced reactive oxygen species and that the inhibition of 8-OHdG formation by ZNS after iron injection may be due to the drug's antioxidant activity. The data suggest that free radical species known to be formed during iron salts,induced focal epileptogenesis cause damage to isocortical DNA. Furthermore, ZNS appears to inhibit the focal injuring response to DNA that occurs following iron salts,induced acute epileptogenesis. [source]


Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; a hypothesis

FEMS YEAST RESEARCH, Issue 4 2003
David Lloyd
Abstract Oscillatory metabolic activities occur more widely than is generally realised; detectability requires observation over extended times of single yeast cells or synchrony of individuals to provide a coherent population. Where oscillations in intracellular metabolite concentrations are observed, the phenomenon has been ascribed to sloppy control, energetic optimisation, signalling, temporal compartmentation of incompatible reactions, or timekeeping functions. Here we emphasise the consequences of respiratory oscillations as a source of mitochondrially generated reactive O2 metabolites. Temporal co-ordination of intracellular activities necessitates a time base. This is provided by an ultradian clock, and one result of its long-term operation is cyclic energisation of mitochondria, and thereby the generation of deleterious free radical species. Our hypothesis is that unrepaired cellular constituents and components (especially mitochondria) eventually lead to cellular senescence and apoptosis when a finite number of respiratory cycles has occurred. [source]


Insect glutathione transferases and insecticide resistance

INSECT MOLECULAR BIOLOGY, Issue 1 2005
A. A. Enayati
Abstract Glutathione transferases (GSTs) are a diverse family of enzymes found ubiquitously in aerobic organisms. They play a central role in the detoxification of both endogenous and xenobiotic compounds and are also involved in intracellular transport, biosynthesis of hormones and protection against oxidative stress. Interest in insect GSTs has primarily focused on their role in insecticide resistance. GSTs can metabolize insecticides by facilitating their reductive dehydrochlorination or by conjugation reactions with reduced glutathione, to produce water-soluble metabolites that are more readily excreted. In addition, they contribute to the removal of toxic oxygen free radical species produced through the action of pesticides. Annotation of the Anopheles gambiae and Drosophila melanogaster genomes has revealed the full extent of this enzyme family in insects. This mini review describes the insect GST enzyme family, focusing specifically on their role in conferring insecticide resistance. [source]


Photoprotection by Porcine Eumelanin Against Singlet Oxygen Production,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2008
Alice Wang
Melanin, a major pigment found in retinal pigment epithelium (RPE) cells, is considered to function in dual roles, one protective and one destructive. By quenching free radical species and reactive oxygen species (ROS) melanin counteracts harmful redox stress. However, melanin is also thought to be capable of creating ROS. In this destructive role, melanin increases redox strain in the cell. This study uses readily available eumelanin extracted from porcine RPE cells as a more authentic model than synthetic melanin to determine specific mechanisms of melanin activity with regard to singlet oxygen in the presence and absence of rose bengal, a singlet-oxygen photosensitizer. Optical detection of singlet-oxygen was determined by monitoring the bleaching of p -nitrosodimethylaniline in the presence of histidine. Production of singlet oxygen in aqueous oxygen-saturated solutions of rose bengal without eumelanin was readily accomplished. In contrast, detection of singlet oxygen in oxygen-saturated solutions of eumelanin without rose bengal failed, consistent with results of others. However, a significant decrease in singlet oxygen production by rose bengal was observed in the presence of eumelanin. After correction for light absorption and chemical bleaching of eumelanin, the results show that eumelanin also provides a photoprotective mode arising from chemistry, that is, not just the physical process of light absorption followed by energy dissipation as heat. [source]