Free Parameters (free + parameter)

Distribution by Scientific Domains


Selected Abstracts


Controller design for natural and robotic systems with transmission delays

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 5 2002
Abhay Kataria
Robust stability and two-dimensional trajectory following problems are considered for n -link robotic systems with transmission delays. Such problems appear in telerobotics, where the controller is physically far from the robot, and in neural control of musculo-skeletal (biological) systems, where muscle actuation and neural sensing are subject to time delays. A typical second-order nonlinear dynamical model is taken with input and output time delays. In a prior work by the authors, a control strategy was developed for stable movement of the planar linkage system, using the standard Q -parameterization and solving an H, control problem to determine the free parameter. In this article, a new control scheme is proposed to eliminate the steady-state errors seen in the tracking performance of the controller derived in the earlier work. Simulation examples are shown to demonstrate the effectiveness of the proposed control methodology. © 2002 Wiley Periodicals, Inc. [source]


Constraints on modified gravity from the observed X-ray luminosity function of galaxy clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
David Rapetti
ABSTRACT We use measurements of the growth of cosmic structure, as inferred from the observed evolution of the X-ray luminosity function (XLF) of galaxy clusters, to constrain departures from general relativity (GR) on cosmological scales. We employ the popular growth rate parameterization, ,m(z),, for which GR predicts a growth index ,, 0.55. We use observations of the cosmic microwave background (CMB), type Ia supernovae (SNIa) and X-ray cluster gas mass fractions (fgas), to simultaneously constrain the expansion history and energy content of the Universe, as described by the background model parameters: ,m, w and ,k, i.e. the mean matter density, the dark energy equation of state parameter and the mean curvature, respectively. Using conservative allowances for systematic uncertainties, in particular for the evolution of the mass,luminosity scaling relation in the XLF analysis, we find ,= 0.51+0.16,0.15 and ,m= 0.27 ± 0.02 (68.3 per cent confidence limits), for a flat cosmological constant, cold dark matter (,CDM) background model. Allowing w to be a free parameter, we find ,= 0.44+0.17,0.15. Relaxing the flatness prior in the ,CDM model, we obtain ,= 0.51+0.19,0.16. When in addition to the XLF data we use the CMB data to constrain , through the ISW effect, we obtain a combined constraint of ,= 0.45+0.14,0.12 for the flat ,CDM model. Our analysis provides the tightest constraints to date on the growth index. We find no evidence for departures from GR on cosmological scales. [source]


Black hole growth in hierarchical galaxy formation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
Rowena K. Malbon
ABSTRACT We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on ,CDM proposed by Baugh et al. Our black hole model has one free parameter, which we set by matching the observed zero-point of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of the optical luminosity function of quasars. We study the demographics of the black hole population and address the issue of how black holes acquire their mass. We find that the direct accretion of cold gas during starbursts is an important growth mechanism for lower mass black holes and at high redshift. On the other hand, the re-assembly of pre-existing black hole mass into larger units via merging dominates the growth of more massive black holes at low redshift. This prediction could be tested by future gravitational wave experiments. As redshift decreases, progressively less massive black holes have the highest fractional growth rates, in line with recent claims of ,downsizing' in quasar activity. [source]


Anomalous extinction behaviour towards the Type Ia SN 2003cg

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
N. Elias-Rosa
ABSTRACT We present optical and near-infrared photometry and spectroscopy of the Type Ia SN 2003cg, which exploded in the nearby galaxy NGC 3169. The observations cover a period between ,8.5 and +414 d post-maximum. SN 2003cg is a normal but highly reddened Type Ia event. Its B magnitude at maximum Bmax= 15.94 ± 0.04 and ,m15(B)obs= 1.12 ± 0.04 [,m15(B)intrinsic= 1.25 ± 0.05]. Allowing RV to become a free parameter within the Cardelli et al. extinction law, simultaneous matches to a range of colour curves of normal SNe Ia yielded E(B,V) = 1.33 ± 0.11, and RV= 1.80 ± 0.19. While the value obtained for RV is small, such values have been invoked in the past, and may imply a grain size which is small compared with the average value for the local interstellar medium. [source]


Constraining dark energy with X-ray galaxy clusters, supernovae and the cosmic microwave background

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
David Rapetti
ABSTRACT We present new constraints on the evolution of dark energy from an analysis of cosmic microwave background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w0, the early-time equation of state wet, and the scalefactor at transition at. From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w0=,1.05+0.10,0.12. Including wet as a free parameter and allowing the transition scalefactor to vary over the range 0.5 < at < 0.95 where the data sets have discriminating power, we measure w0=,1.27+0.33,0.39 and wet=,0.66+0.44,0.62. We find no significant evidence for evolution in the dark energy equation-of-state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density ,m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index ns, the physical baryon density ,bh2 and the optical depth ,. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w0=,1.09+0.12,0.15 and obtain a tight constraint on the current dark energy density ,de= 0.70 ± 0.03. For dark energy models other than a cosmological constant, energy,momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c2s= 1 in the dark energy fluid as expected for quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints on wet, which would be tighter than those mentioned above by approximately a factor of 2 with the current data. [source]


The temperature of the intergalactic medium and the Compton y parameter

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
Pengjie Zhang
ABSTRACT The thermal Sunyaev,Zeldovich (SZ) effect directly probes the thermal energy of the Universe. Its precision modelling and future high-accuracy measurements will provide a powerful way to constrain the thermal history of the Universe. In this paper, we focus on the precision modelling of the gas density weighted temperature and the mean SZ Compton y parameter. We run high-resolution adiabatic hydrodynamic simulations adopting the WMAP cosmology to study the temperature and density distribution of the intergalactic medium (IGM). To quantify possible simulation limitations, we run n=,1, , 2 self-similar simulations. Our analytical model on is based on energy conservation and matter clustering and has no free parameter. Combining both simulations and analytical models thus provides the precision modelling of and . We find that the simulated temperature probability distribution function and shows good convergence. For the WMAP cosmology, our highest-resolution simulation (10243 cells, 100 Mpc h,1 box size) reliably simulates with better than 10 per cent accuracy for z, 0.5. Toward z= 0, the simulation mass-resolution effect becomes stronger and causes the simulated to be slightly underestimated (at z= 0, ,20 per cent underestimated). Since is mainly contributed by the IGM at z, 0.5, this simulation effect on is no larger than ,10 per cent. Furthermore, our analytical model is capable of correcting this artefact. It passes all tests of self-similar simulations and WMAP simulations and is able to predict and to several per cent accuracy. For a low matter density ,CDM cosmology, the present is 0.32 (,8/0.84)(,m/0.268) keV, which accounts for 10,8 of the critical cosmological density and 0.024 per cent of the cosmic microwave background (CMB) energy. The mean y parameter is 2.6 × 10,6 (,8/0.84)(,m/0.268). The current upper limit of y < 1.5 × 10,5 measured by FIRAS has already ruled out combinations of high ,8, 1.1 and high ,m, 0.5. [source]


Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2001
Ewa L.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M,/L, is assumed, the required mass of the dark halo is , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax. [source]


Gravity and the quantum vacuum inertia hypothesis

ANNALEN DER PHYSIK, Issue 8 2005
A. Rueda
Abstract In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero-point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be explainable. This in turn leads to a straightforward derivation of the classical Newtonian gravitational force. We call the inertia and gravitation connection with the vacuum fields the quantum vacuum inertia hypothesis. To date only the electromagnetic field has been considered. It remains to extend the hypothesis to the effects of the vacuum fields of the other interactions. We propose an idealized experiment involving a cavity resonator which, in principle, would test the hypothesis for the simple case in which only electromagnetic interactions are involved. This test also suggests a basis for the free parameter ,(,) which we have previously defined to parametrize the interaction between charge and the electromagnetic zero-point field contributing to the inertial mass of a particle or object. [source]


Gauged harmonic maps, Born-Infeld electromagnetism, and magnetic vortices

COMMUNICATIONS ON PURE & APPLIED MATHEMATICS, Issue 11 2003
Fanghua Lin
We study maps from a 2-surface into the standard 2-sphere coupled with Born-Infeld geometric electromagnetism through an Abelian gauge field. Such a formalism extends the classical harmonic map model, known as the ,-model, governing the spin vector orientation in a ferromagnet allows us to obtain the coexistence of vortices and antivortices characterized by opposite, self-excited, magnetic flux lines. We show that the Born-Infeld free parameter may be used to achieve arbitrarily high local concentration of magnetic flux lines that the total minimum energy is an additive function of these quantized flux lines realized as the numbers of vortices antivortices. In the case where the underlying surface, or the domain, is compact, we obtain a necessary sufficient condition for the existence of a unique solution representing a prescribed distribution of vortices antivortices. In the case where the domain is the full plane, we prove the existence of a unique solution representing an arbitrary distribution of vortices and antivortices. Furthermore, we also consider the Einstein gravitation induced by these vortices, known as cosmic strings, establish the existence of a solution representing a prescribed distribution of cosmic strings cosmic antistrings under a necessary sufficient condition that makes the underlying surface a complete surface with respect to the induced gravitational metric. © 2003 Wiley Periodicals, Inc. [source]


Optimization of integrated Earth System Model components using Grid-enabled data management and computation

CONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 2 2007
A. R. Price
Abstract In this paper, we present the Grid enabled data management system that has been deployed for the Grid ENabled Integrated Earth system model (GENIE) project. The database system is an augmented version of the Geodise Database Toolbox and provides a repository for scripts, binaries and output data in the GENIE framework. By exploiting the functionality available in the Geodise toolboxes we demonstrate how the database can be employed to tune parameters of coupled GENIE Earth System Model components to improve their match with observational data. A Matlab client provides a common environment for the project Virtual Organization and allows the scripting of bespoke tuning studies that can exploit multiple heterogeneous computational resources. We present the results of a number of tuning exercises performed on GENIE model components using multi-dimensional optimization methods. In particular, we find that it is possible to successfully tune models with up to 30 free parameters using Kriging and Genetic Algorithm methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


A new family of generalized-, time integration algorithms without overshoot for structural dynamics

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2008
Yu KaiPing
Abstract A new family of generalized-, (G-,) algorithm without overshoot is presented by introducing seven free parameters into the single-step three-stage formulation for solution of structural dynamic problems. It is proved through finite difference analysis that these algorithms are unconditionally stable, second-order accurate and numerical dissipation controllable. The comparison of the new G-, algorithms with the commonly used G-, algorithms shows that the newly developed algorithms have the advantage of eliminating the overshooting characteristics exhibited by the commonly used algorithms while their excellent property of dissipation is preserved. The numerical simulation results obtained using a single-degree-of-freedom system and a two-degree-of-freedom system to represent the character of typical large systems coincide well with the results of theoretical analyses. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Allometric growth, life-history invariants and population energetics

ECOLOGY LETTERS, Issue 4 2005
Evan P. Economo
Abstract Population and community level processes must be at least partially determined by variation in the body sizes of constituent individuals, implying quantitative scaling relations can be extended to account for variation in those processes. Here we integrate allometric growth and life-history invariant theories, and use this approach to develop theory describing the energetics of stationary populations. Our predictions approximate, with no free parameters, the scaling of production/biomass and assimilation/biomass ratios in mammalian populations and work partially for fish populations. This approach appears to be a promising direction and suggests the need for further development of the growth and life-history models, and extensions of those theories. [source]


Generalized lattice-BGK concept for thermal and chemically reacting flows at low Mach numbers

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2006
D. Hänel
Abstract The lattice-BGK method has been extended by introducing additional, free parameters in the original formulation of the lattice-BGK methods. The relationship between these parameters and the macroscopic moment equations is analysed by Taylor series and Chapman,Enskog expansion. The parameters are determined from the macroscopic moment equations by comparisons with the governing equations to be modelled. Extensions are presented for the Navier,Stokes equations at low Mach numbers in Cartesian or axisymmetric coordinates with constant or variable density, for scalar convection,diffusion equations and for equations of Poisson type. The generalized lattice-BGK concept is demonstrated by two applications of chemical engineering. These are the computation of chemically reacting flow through an axisymmetric reactor and of the transport and deposition of particles to filters under the action of different forces. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Link between the kinetic- and exchange-energy functionals in the generalized gradient approximation

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2002
Fabien Tran
Abstract An approximate kinetic-energy functional of the generalized gradient approximation form was derived following the "conjointness conjecture" of Lee, Lee, and Parr. The functional shares the analytical form of its gradient dependency with the exchange-energy functionals of Becke and Perdew, Burke, and Ernzerhof. The two free parameters of this functional were determined using the exact values of the kinetic energy of He and Xe atoms. A set of 12 closed-shell atoms was used to test the accuracy of the proposed functional and more than 30 others taken from the literature. It is shown that the conjointness conjecture leads to a very good class of kinetic-energy functionals. Moreover, the functional developed in this work is shown to be one of the most accurate despite its simple analytical form. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002 [source]


Improved bolus arrival time and arterial input function estimation for tracer kinetic analysis in DCE-MRI

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2009
Anup Singh PhD
Abstract Purpose To develop a methodology for improved estimation of bolus arrival time (BAT) and arterial input function (AIF) which are prerequisites for tracer kinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data and to verify the applicability of the same in the case of intracranial lesions (brain tumor and tuberculoma). Materials and Methods A continuous piecewise linear (PL) model (with BAT as one of the free parameters) is proposed for concentration time curve C(t) in T1 -weighted DCE-MRI. The resulting improved procedure suggested for automatic extraction of AIF is compared with earlier methods. The accuracy of BAT and other estimated parameters is tested over simulated as well as experimental data. Results The proposed PL model provides a good approximation of C(t) trends of interest and fit parameters show their significance in a better understanding and classification of different tissues. BAT was correctly estimated. The automatic and robust estimation of AIF obtained using the proposed methodology also corrects for partial volume effects. The accuracy of tracer kinetic analysis is improved and the proposed methodology also reduces the time complexity of the computations. Conclusion The PL model parameters along with AIF measured by the proposed procedure can be used for an improved tracer kinetic analysis of DCE-MRI data. J. Magn. Reson. Imaging 2009;29:166,176. © 2008 Wiley-Liss, Inc. [source]


SELF-DECOMPOSABILITY AND OPTION PRICING

MATHEMATICAL FINANCE, Issue 1 2007
Peter Carr
The risk-neutral process is modeled by a four parameter self-similar process of independent increments with a self-decomposable law for its unit time distribution. Six different processes in this general class are theoretically formulated and empirically investigated. We show that all six models are capable of adequately synthesizing European option prices across the spectrum of strikes and maturities at a point of time. Considerations of parameter stability over time suggest a preference for two of these models. Currently, there are several option pricing models with 6,10 free parameters that deliver a comparable level of performance in synthesizing option prices. The dimension reduction attained here should prove useful in studying the variation over time of option prices. [source]


Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
M. Schartmann
ABSTRACT Recently, high-resolution observations with the help of the near-infrared adaptive optics integral field spectrograph Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the Very Large Telescope proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high-resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, especially focusing on stellar mass loss feeding gas into the ambient interstellar medium and driving turbulence. This leads to a vertically wide distributed clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec-scale region (accessible via SINFONI observations) to the (sub-)parsec-scale region (observable with the mid-infrared interferometer instrument and via water maser emission). Thereby, this procedure provides us with an ideal testbed for data comparison. In this work, we concentrate on the effects of a parametrized turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Most of the input parameters are constrained by available observations of the nearby Seyfert 2 galaxy NGC 1068, and we discuss parameter studies for the free parameters. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8,0.9 pc, gas masses of 106 M, and mass transfer rates of 0.025 M, yr,1 through the inner rim of the disc. This shows that our large-scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well. [source]


Probing cosmology and galaxy cluster structure with the Sunyaev,Zel'dovich decrement versus X-ray temperature scaling relation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
Cien Shang
ABSTRACT Scaling relations among galaxy cluster observables, which will become available in large future samples of galaxy clusters, could be used to constrain not only cluster structure, but also cosmology. We study the utility of this approach, employing a physically motivated parametric model to describe cluster structure and applying it to the expected relation between the Sunyaev,Zel'dovich decrement (S,) and the emission-weighted X-ray temperature (Tew). The slope and normalization of the entropy profile, the concentration of the dark matter potential, the pressure at the virial radius and the level of non-thermal pressure support as well as the mass and redshift dependence of these quantities are described by free parameters. With a suitable choice of fiducial parameter values, the cluster model satisfies several existing observational constraints. We employ a Fisher matrix approach to estimate the joint errors on cosmological and cluster structure parameters from a measurement of S, versus Tew in a future survey. We find that different cosmological parameters affect the scaling relation differently: predominantly through the baryon fraction (,m and ,b), the virial overdensity (w0 and wa for low- z clusters) and the angular diameter distance (w0 and wa for high- z clusters; ,DE and h). We find that the cosmology constraints from the scaling relation are comparable to those expected from the number counts (dN/dz) of the same clusters. The scaling-relation approach is relatively insensitive to selection effects and it offers a valuable consistency check; combining the information from the scaling relation and dN/dz is also useful to break parameter degeneracies and help disentangle cluster physics from cosmology. Our work suggests that scaling relations should be a useful component in extracting cosmological information from large future cluster surveys. [source]


New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009
Adi Zitrin
ABSTRACT We present an improved strong-lensing analysis of Cl0024+1654 (z= 0.39) using deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS)/NIC3 images, based on 33 multiply-lensed images of 11 background galaxies. These are found with a model that assumes mass approximately traces light, with a low-order expansion to allow for flexibility on large scales. The model is constrained initially by the well-known five-image system (z= 1.675) and refined as new multiply-lensed systems are identified using the model. Photometric redshifts of these new systems are then used to constrain better the mass profile by adopting the standard cosmological relation between redshift and lensing distance. Our model requires only six free parameters to describe well all positional and redshift data. The resulting inner mass profile has a slope of d log M/d log r,,0.55, consistent with new weak-lensing measurements where the data overlap, at r, 200 kpc/h70. The combined profile is well fitted by a high-concentration Navarro, Frenk & White (NFW) mass profile, Cvir, 8.6 ± 1.6, similar to other well-studied clusters, but larger than predicted with standard , cold dark matter (,CDM). A well-defined radial critical curve is generated by the model and is clearly observed at r, 12 arcsec, outlined by elongated images pointing towards the centre of mass. The relative fluxes of the multiply-lensed images are found to agree well with the modelled magnifications, providing an independent consistency check. [source]


A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
Ramin A. Skibba
ABSTRACT Successful halo-model descriptions of the luminosity dependence of clustering distinguish between the central galaxy in a halo and all the others (satellites). To include colours, we provide a prescription for how the colour,magnitude relation of centrals and satellites depends on halo mass. This follows from two assumptions: (i) the bimodality of the colour distribution at a fixed luminosity is independent of halo mass and (ii) the fraction of satellite galaxies which populate the red sequence increases with luminosity. We show that these two assumptions allow one to build a model of how galaxy clustering depends on colour without any additional free parameters than those required to model the luminosity dependence of galaxy clustering. We then show that the resulting model is in good agreement with the distribution and clustering of colours in the Sloan Digital Sky Survey, both by comparing the predicted correlation functions of red and blue galaxies with measurements and by comparing the predicted colour,mark correlation function with the measured one. Mark correlation functions are powerful tools for identifying and quantifying correlations between galaxy properties and their environments: our results indicate that the correlation between halo mass and environment is the primary driver for correlations between galaxy colours and the environment; additional correlations associated with halo ,assembly bias' are relatively small. Our approach shows explicitly how to construct mock catalogues which include both luminosities and colours , thus providing realistic training sets for, e.g., galaxy cluster-finding algorithms. Our prescription is the first step towards incorporating the entire spectral energy distribution into the halo model approach. [source]


An empirical model for the polarization of pulsar radio emission

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006
Don Melrose
ABSTRACT We present an empirical model for single pulses of radio emission from pulsars based on Gaussian probability distributions for relevant variables. The radiation at a specific pulse phase is represented as the superposition of radiation in two (approximately) orthogonally polarized modes (OPMs) from one or more subsources in the emission region of the pulsar. For each subsource, the polarization states are drawn randomly from statistical distributions, with the mean and the variance on the Poincaré sphere as free parameters. The intensity of one OPM is chosen from a lognormal distribution, and the intensity of the other OPM is assumed to be partially correlated, with the degree of correlation also chosen from a Gaussian distribution. The model is used to construct simulated data described in the same format as real data: distributions of the polarization of pulses on the Poincaré sphere and histograms of the intensity and other parameters. We concentrate on the interpretation of data for specific phases of PSR B0329+54 for which the OPMs are not orthogonal, with one well defined and the other spread out around an annulus on the Poincaré sphere at some phases. The results support the assumption that the radiation emerges in two OPMs with closely correlated intensities, and that in a statistical fraction of pulses one OPM is invisible. [source]


Constraining dark energy with X-ray galaxy clusters, supernovae and the cosmic microwave background

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
David Rapetti
ABSTRACT We present new constraints on the evolution of dark energy from an analysis of cosmic microwave background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w0, the early-time equation of state wet, and the scalefactor at transition at. From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w0=,1.05+0.10,0.12. Including wet as a free parameter and allowing the transition scalefactor to vary over the range 0.5 < at < 0.95 where the data sets have discriminating power, we measure w0=,1.27+0.33,0.39 and wet=,0.66+0.44,0.62. We find no significant evidence for evolution in the dark energy equation-of-state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density ,m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index ns, the physical baryon density ,bh2 and the optical depth ,. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w0=,1.09+0.12,0.15 and obtain a tight constraint on the current dark energy density ,de= 0.70 ± 0.03. For dark energy models other than a cosmological constant, energy,momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c2s= 1 in the dark energy fluid as expected for quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints on wet, which would be tighter than those mentioned above by approximately a factor of 2 with the current data. [source]


voboz: an almost-parameter-free halo-finding algorithm

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2005
Mark C. Neyrinck
ABSTRACT We have developed an algorithm, called voboz (VOronoi BOund Zones), to find haloes in an N -body dark matter simulation; it has as little dependence on free parameters as we can manage. By using the Voronoi diagram, we achieve non-parametric, ,natural' measurements of each particle's density and set of neighbours. We then eliminate much of the ambiguity in merging sets of particles together by identifying every possible density peak, and measuring the probability that each does not arise from Poisson noise. The main halo in a cluster tends to have a high probability, while its subhaloes tend to have lower probabilities. The first parameter in voboz controls the subtlety of particle unbinding, and may be eliminated if one is cavalier with processor time; even if one is not, the results saturate to the parameter-free answer when the parameter is sufficiently small. The only parameter that remains, an outer density cut-off, does not influence whether or not haloes are identified, nor does it have any effect on subhaloes; it only affects the masses returned for supercluster haloes. [source]


Dynamo-generated magnetic fields at the surface of a massive star

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
D. J. Mullan
ABSTRACT Spruit has shown that an astrophysical dynamo can operate in the non-convective material of a differentially rotating star as a result of a particular instability in the magnetic field (the Tayler instability). By assuming that the dynamo operates in a state of marginal instability, Spruit has obtained formulae which predict the equilibrium strengths of azimuthal and radial field components in terms of local physical quantities. Here, we apply Spruit's formulae to our previously published models of rotating massive stars in order to estimate Tayler dynamo field strengths. There are no free parameters in Spruit's formulae. In our models of 10- and 50-M, stars on the zero-age main sequence, we find internal azimuthal fields of up to 1 MG, and internal radial components of a few kG. Evolved models contain weaker fields. In order to obtain estimates of the field strength at the stellar surface, we examine the conditions under which the Tayler dynamo fields are subject to magnetic buoyancy. We find that conditions for Tayler instability overlap with those for buoyancy at intermediate to high magnetic latitudes. This suggests that fields emerge at the surface of a massive star between magnetic latitudes of about 45° and the poles. We attempt to estimate the strength of the field which emerges at the surface of a massive star. Although these estimates are very rough, we find that the surface field strengths overlap with values which have been reported recently for line-of-sight fields in several O and B stars. [source]


Modelling the extreme ultraviolet emission during the low state of Hercules X-1

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2003
D. A. Leahy
ABSTRACT Hercules X-1 was observed for extended periods during its low state by the Extreme Ultraviolet Explorer (EUVE). These observations yield low-state light curves in the extreme ultraviolet (EUV) which are compared with a composite model here. The model includes reflection of soft X-rays off the companion HZ Her, including the shadowing of HZ Her by the accretion disc, and emission from the accretion disc surface. Four different geometries for the accretion disc were adopted, all derived from the RXTE All-Sky Monitor (ASM) 35-day light-curve modelling. Three were thin disc models for different system inclinations, i, and the fourth was a disc with a thick inner ring for i= 85°. With the HZ Her reflection model, with no free parameters except normalization, and a simple model for the disc emission, the models fit the data well. The disc emission accounts for about half of the EUV flux, depending on which accretion disc geometry is used. The disc geometry that best fits the EUV light curves is the disc with a thick inner ring, which is the same model that gives the best fit to the RXTE/ASM light curve. [source]


Modelling angular-momentum history in dark-matter haloes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002
Ariyeh H. Maller
We model the acquisition of spin by dark-matter haloes in semi-analytic merger trees. We explore two different algorithms: one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of haloes found in N -body simulations, namely, a log-normal distribution with mean , 0.04 and standard deviation , 0.5 in the log. A perfect match requires fine-tuning of two free parameters. Both algorithms also reproduce the general insensitivity of the spin distribution to halo mass, redshift and cosmology seen in N -body simulations. The spin distribution can be made strictly constant by physically motivated scalings of the free parameters. In addition, both schemes predict that haloes that have had recent major mergers have systematically larger spin values. These algorithms can be implemented within semi-analytic models of galaxy formation based on merger trees. They yield detailed predictions of galaxy properties that strongly depend on angular momentum (such as size and surface brightness) as a function of merger history and environment. [source]


A Quadratic Eigenproblem in the Analysis of a Time Delay System

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006
Elias JarlebringArticle first published online: 4 DEC 200
In this work we solve a quadratic eigenvalue problem occurring in a method to compute the set of delays of a linear time delay system (TDS) such that the system has an imaginary eigenvalue. The computationally dominating part of the method is to find all eigenvalues z of modulus one of the quadratic eigenvalue problem where ,1, ,, ,m ,1 , , are free parameters and u a vectorization of a Hermitian rank one matrix. Because of its origin in the vectorization of a Lyapunov type matrix equation, the quadratic eigenvalue problem is, even for moderate size problems, of very large size. We show one way to treat this problem by exploiting the Lyapunov type structure of the quadratic eigenvalue problem when constructing an iterative solver. More precisely, we show that the shift-invert operation for the companion form of the quadratic eigenvalue problem can be efficiently computed by solving a Sylvester equation. The usefulness of this exploitation is demonstrated with an example. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The topomer search model: A simple, quantitative theory of two-state protein folding kinetics

PROTEIN SCIENCE, Issue 1 2003
Dmitrii E. Makarov
Abstract Most small, single-domain proteins fold with the uncomplicated, single-exponential kinetics expected for diffusion on a smooth energy landscape. Despite this energetic smoothness, the folding rates of these two-state proteins span a remarkable million-fold range. Here, we review the evidence in favor of a simple, mechanistic description, the topomer search model, which quantitatively accounts for the broad scope of observed two-state folding rates. The model, which stipulates that the search for those unfolded conformations with a grossly correct topology is the rate-limiting step in folding, fits observed rates with a correlation coefficient of ,0.9 using just two free parameters. The fitted values of these parameters, the pre-exponential attempt frequency and a measure of the difficulty of ordering an unfolded chain, are consistent with previously reported experimental constraints. These results suggest that the topomer search process may dominate the relative barrier heights of two-state protein-folding reactions. [source]


Online identification of nonlinear multivariable processes using self-generating RBF neural networks

ASIAN JOURNAL OF CONTROL, Issue 5 2010
Karim Salahshoor
Abstract This paper addresses the problem of online model identification for multivariable processes with nonlinear and time-varying dynamic characteristics. For this purpose, two online multivariable identification approaches with self-organizing neural network model structures will be presented. The two adaptive radial basis function (RBF) neural networks are called as the growing and pruning radial basis function (GAP-RBF) and minimal resource allocation network (MRAN). The resulting identification algorithms start without a predefined model structure and the dynamic model is generated autonomously using the sequential input-output data pairs in real-time applications. The extended Kalman filter (EKF) learning algorithm has been extended for both of the adaptive RBF-based neural network approaches to estimate the free parameters of the identified multivariable model. The unscented Kalman filter (UKF) has been proposed as an alternative learning algorithm to enhance the accuracy and robustness of nonlinear multivariable processes in both the GAP-RBF and MRAN based approaches. In addition, this paper intends to study comparatively the general applicability of the particle filter (PF)-based approaches for the case of non-Gaussian noisy environments. For this purpose, the Unscented Particle Filter (UPF) is employed to be used as alternative to the EKF and UKF for online parameter estimation of self-generating RBF neural networks. The performance of the proposed online identification approaches is evaluated on a highly nonlinear time-varying multivariable non-isothermal continuous stirred tank reactor (CSTR) benchmark problem. Simulation results demonstrate the good performances of all identification approaches, especially the GAP-RBF approach incorporated with the UKF and UPF learning algorithms. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source]


Tayler instability of toroidal magnetic fields in MHD Taylor-Couette flows

ASTRONOMISCHE NACHRICHTEN, Issue 1 2010
G. Rüdiger
Abstract The nonaxisymmetric Tayler instability (TI) of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two infinitely long corotating cylinders. For given Reynolds number of rotation the magnetic Prandtl number Pm of the liquid conductor and the ratio of the cylinder's rotation rates are the free parameters. It is shown that for resting cylinders the critical Hartmann number for instability does not depend on Pm hence the TI also exists in the limit Pm , 0. By rigid rotation the instability is suppressed where for Pm = 1 the rotational quenching takes its maximum. Rotation laws with negative shear (i.e. d, /dR < 0) strongly destabilize the toroidal field if the rotation is not too fast. In galaxies with their quadrupolar magnetic field geometry this effect could have drastic implications. For sufficiently high Reynolds numbers of rotation, however, the TI completely disappears. For the considered magnetic constellation the superrotation laws support the rotational stabilization. The angular momentum transport of the instability is anticorrelated with the shear so that an eddy viscosity can be defined which proves to be positive. We have also shown the possibility of laboratory TI experiments with a wide-gap container filled with fluid metals like sodium or gallium. Even the effect of the rotational stabilization can be reproduced in the laboratory with electric currents of only a few kA (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]