Home About us Contact | |||
Free Carrier Concentration (free + carrier_concentration)
Selected AbstractsSilicon Doping of Gallium Nitride Using Ditertiarybutylsilane,CHEMICAL VAPOR DEPOSITION, Issue 4 2004C.J. Deatcher Ditertiarybutylsilane is demonstrated as an effective silicon n-dopant source for GaN. The air-stable liquid silicon source is shown to offer significant safety advantages over the hydride gases in current use. Transport measurements using the Hall technique, supplemented by high-resolution XRD and AFM (Figure), have been used to confirm that the quality of GaN doped using this precursor is very similar to that currently doped by SiH4. Free carrier concentrations between 8,×,1016 and 7,×,1018 are achieved. [source] Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1,xAlxSb11,ADVANCED FUNCTIONAL MATERIALS, Issue 18 2008Eric S. Toberer Abstract For high temperature thermoelectric applications, Yb14MnSb11 has a maximum thermoelectric figure of merit (zT) of ,1.0 at 1273,K. Such a high zT is found despite a carrier concentration that is higher than typical thermoelectric materials. Here, we reduce the carrier concentration with the discovery of a continuous transition between metallic Yb14MnSb11 and semiconducting Yb14AlSb11. Yb14Mn1-xAlxSb11 forms a solid solution where the free carrier concentration gradually changes as expected from the Zintl valence formalism. Throughout this transition the electronic properties are found to obey a rigid band model with a band gap of 0.5,eV and an effective mass of 3 me. As the carrier concentration decreases, an increase in the Seebeck coefficient is observed at the expense of an increased electrical resistivity. At the optimum carrier concentration, a maximum zT of 1.3 at 1223,K is obtained, which is more than twice that of the state-of-the-art Si0.8Ge0.2 flown by NASA. [source] Dynamics of spin interactions in diluted magnetic semiconductor heterostructuresPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2007*Article first published online: 19 DEC 200, D. R. Yakovlev Abstract This paper gives an overview of the recent studies of spin dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te. The spin dynamics is controlled by energy and spin transfer between systems of magnetic ions, lattice (phonon system) and free carriers. Spin,lattice relaxation time of the Mn spin system is a very strong function of the Mn content, it decreases by five orders of magnitude when the Mn content changes from 0.4 to 11%. Additionally this time can be tuned by the varying free carrier concentration and by the growth of heteromagnetic structures with inhomogeneous profile of Mn ions. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Effective mass of InN estimated by Raman scatteringPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7-8 2010Jung Gon Kim Abstract We have estimated the longitudinal effective mass (m,) of electron in n-type InN films by Raman scattering. The samples were grown by MOVPE (metal organic vapor phase epitaxy) with free carrier concentration of n =6.7×1018 -9.9×1018 cm -3 according to Hall measurement. A weak Raman signal observed at ,430 cm -1 at room temperature was sharpened and shifted to higher frequency toward the A1(TO)-phonon mode at 447 cm -1 with increasing n. This mode was assigned to the lower branch (L - ) of the longitudinal-optic-phonon-plasmon-coupled (LOPC) mode. The line shape was carefully analyzed by a semi-classical line-shape fitting analysis assuming deformation potential and electro-optic coupling mechanisms for the light scattering process. A line-shape fitting analysis was conducted by adjusting three major parameters; electron density, effective mass and plasmon damping rate. The analysis well reproduced values of electron density and mobility deduced by Hall measurement. Electron effective mass of m,*/m0 = 0.05 (±0.01) was also obtained as the best-fit parameter. The result agrees well with previous data obtained by other optical methods. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] In-situ doping and implantation of GaN layers with MnPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue S2 2009k Sofer Abstract In this paper we present a growth of Ga1,xMnxN layers by MOVPE and ion implantation of GaN layers with Mn. The Mn concentration detected by electron microprobe and PIXE was well below the solubility limit, ranging from 0.2 to 1.1 at.%. Implanted doses of Mn ions were in the range 1x1016 -5x1016 Mn atoms.cm,2 with energy of 330 keV. The analysis of the MOVPE deposition process of Ga1,xMnxN thin films revealed an unfavorable ratio between the apparent Mn concentration in the gas phase and its doping level in the deposited layer. On the other hand, the incorporation of Mn has a positive effect on the resulting surface morphology. The optimal deposition temperature of 1000 °C was found out as a compromise between the layer quality and Mn concentration. In both in-situ grown and implanted samples, a ferromagnetic component persisting up to room temperature and a prevailing paramagnetic phase were observed. The ferromagnetic moment observed in implanted samples was influenced by free carrier concentration in GaN layers which were used for implantation. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Optical micro-characterization of group-III-nitrides: correlation of structural, electronic and optical propertiesPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2003J. Christen Abstract For a detailed understanding of complex semiconductor heterostructures and the physics of devices based on them, a systematic determination and correlation of the structural, chemical, electronic, and optical properties on a micro- or nano-scale is essential. Luminescence techniques belong to the most sensitive, non-destructive methods of semiconductor research. The combination of luminescence spectroscopy with the high spatial resolution of a scanning electron microscope, as realized by the technique of cathodoluminescence microscopy, provides a powerful tool for the optical nano-characterization of semiconductors, their heterostructures as well as their interfaces. Additional access to the local electronic and structural properties is provided by micro-Raman spectroscopy, e.g. giving insight into the local free carrier concentration and local stress. In this paper, the properties of group-III-nitrides are investigated by highly spatially and spectrally resolved cathodoluminescence microscopy in conjunction with micro-Raman spectroscopy. Complex phenomena of self-organization and their strong impact on the microscopic and nanoscopic properties of both binary and ternary nitrides are presented. As the ultimate measure of device performance, the microscopic properties of light emitting diodes are assessed under operation. Using micro-electroluminescence mapping in the optical microscope as well as in the near field detection mode of a scanning near field optical microscope, the microscopic origin of the macroscopic spectral red shift in light emitting diodes is identified. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Photoluminescence and Hall studies of GaN:Fe and (Ga,Fe)N:Mg layersPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2007M. Wegscheider Abstract Temperature dependent photoluminescence (PL) in the ultraviolet (UV) regime and Hall measurements at room temperature have been performed on Metal-Organic-Chemical-Vapour-Deposition (MOCVD) grown GaN:Fe and (Ga,Fe)N:Mg layers. PL measurements were employed in order to study the dopants' influence on the near-band edge excitonic emission and their tendency to provoke the formation and suppression of defects or incorporation of impurities. For their identification and for the understanding of the PL spectra the evaluation of the free carrier concentrations via Hall measurements were necessary. Depending on the iron concentration of the (Ga,Fe)N layers, the near-band edge emission goes through two different stages: at low Fe-concentration no excitonic emission can be seen whereas with higher doping levels, excitonic features develop. The (Ga,Fe)N films exhibit n-type behaviour. The Mg codoped samples show strong Mg and defect related luminescence bands, whose occurrence and intensity also strongly depends on whether high or low Fe concentration is present. The (Ga,Fe)N:Mg layers were semi insulating. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |