Fresh Matter (fresh + matter)

Distribution by Scientific Domains


Selected Abstracts


Silage quality when Moringa oleifera is ensiled in mixtures with Elephant grass, sugar cane and molasses

GRASS & FORAGE SCIENCE, Issue 4 2009
B. Mendieta-Araica
Abstract Fourteen different silages were prepared using mixtures of Moringa (Moringa oleifera), Elephant grass (Pennisetum purpureum cv Taiwan) or sugar cane (Saccharum officinarum). Molasses from sugar cane was used in the amounts of either 10 or 50 g kg,1 fresh matter (FM) in treatments without sugar cane. A completely randomized design with three replicates of each treatment was used. The silages were prepared in 1800 mL micro silos and opened after 120 d. The presence of Moringa and Elephant grass in the silage changed the pH by ,0·8 and +0·7, respectively (P < 0·001), indicating a favourable effect of Moringa on silage pH. Overall differences were found among treatments for dry matter content, crude protein and acetic acid concentrations, weight loss, CO2 production and silage pH after spoilage (P < 0·001). Weight loss was proportionately 0·034 and 0·014 in silages with and without sugar cane respectively (P < 0·001). Overall, differences (P < 0·05) were also found for neutral-detergent fibre and lactic acid concentrations, lactic acid bacteria counts, clostridial counts and time to spoilage of the silages. Treatments containing Moringa had higher lactic acid concentrations (+16 g kg,1 DM; P < 0·01) compared to treatments without but the presence of Moringa decreased time to spoilage by 67 h (P < 0·05). No differences were found in propionic acid concentration or fungal growth of the silages. It is concluded that Moringa can be used as a component of high quality silages which also contain high concentrations of crude protein. [source]


Use of liquid chromatography,tandem mass spectrometry for quantitative analysis of clopyralid in compost and forage

GRASSLAND SCIENCE, Issue 3 2009
Ryuichi Uegaki
Abstract In this study, we first developed a technique to quantify clopyralid using liquid chromatography,tandem mass spectrometry (LC/MS/MS) and tested its performance for compost and corn plant samples. Then, we measured the uptake of clopyralid by forage corn grown on two types of soil mixed with clopyralid-contaminated compost, in order to investigate the potential of ingestion of compost clopyralid by animals through forage crops. Because of the high recovery ratios (80,82% for compost and 98% for corn), sufficient theoretical quantification limits (5.0 and 1.7 ,g kg,1 fresh matter, respectively) and close agreement with the bioassay method (73 ,g kg,1 for LC/MS/MS and 80 ,g kg,1 for bioassay), the LC/MS/MS method was considered to be of potential value for determining clopyralid in compost and plant materials. Corn plants took up clopyralid from soil (compost), with the amount and rate of uptake varying with soil types and application of activated carbon to soil. There is a need for quantifying clopyralid uptake by a range of forage crops under a range of cultivation conditions (e.g. climate, soil, management) to estimate clopyralid fluxes through the manure,forage,animal,manure pathway. [source]


Ensilage of wilted whole crop rice (Oryza sativa L.) using a roll baler for chopped material: Silage quality in long-term storage

GRASSLAND SCIENCE, Issue 2 2007
Hidenori Kawamoto
Abstract We examined the effects of long-term storage on the fermentation quality, chemical composition, and digestibility of wilted whole crop rice silage prepared using a roll baler for chopped material (set chop length, 13 mm) and compared the results with those obtained by using a conventional roll baler. The roll balers were used for ensiling whole crop rice of three types: (i) dough-ripe stage with light wilting (45% dry matter); (ii) dough-ripe stage with heavy wilting (65% dry matter); and (iii) yellow-ripe stage with light wilting (45% dry matter). The apparent dry matter density was higher in the ensiled roll bales composed of chopped whole crop rice (chopped bales) than in those composed of non-chopped whole crop rice (conventional bales) (195,250 kg m,3 vs 156,218 kg m,3, respectively). The formation of volatile fatty acids and ammonia-nitrogen was low in all types of silage. Further, no marked differences in the chemical composition and apparent dry matter digestibility were observed between silage from the two types of bales. However, there were significant differences in their lactic acid and ethanol contents. The lactic acid production in the conventional silage was low (0.08,0.14% fresh matter), whereas that in the chopped silage was high (0.71,0.97% fresh matter). A lower pH value (pH 4.0,4.3) was retained in the chopped silage after 10 months of storage. High ethanol production (1.1,2.5% fresh matter) was observed in the conventional silage, whereas ethanol production decreased to less than 1% in the chopped silage. These results indicate that although the ethanol fermentation is readily enhanced in the ensilage of wilted whole crop rice performed by a conventional baler, the ensilage performed by a baler for chopped material encourages lactic acid fermentation and suppresses ethanol production over a wide moisture range throughout the long-term storage. [source]


Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2007
Ilona Schonhof
Abstract The effects of insufficient and optimal sulfur (S) and nitrogen (N) supply on plant growth and glucosinolate formation were studied under controlled experimental conditions in broccoli "Monaco". Here, we report on the interaction between S and N supply, plant growth, and quality parameters and discuss the relevance of this interaction in relation to crop-management strategies. Broccoli plants supplied with insufficient amounts of S or N showed typical deficiency symptoms and yield decreases. In contrast, total glucosinolate concentrations were high at insufficient N supply, independent of the S level, and low at insufficient S supply in combination with an optimal N supply. This was mainly due to the presence of the alkyl glucosinolates glucoraphanin and glucoiberin. Furthermore, with S concentrations above 6 g (kg DM),1 and an N : S ratio lower than 10:1, the glucosinolate concentrations were on average around 0.33 g (kg fresh matter),1 and differed significantly from those plants characterized by an S concentration below 6 g (kg DM),1 and an N : S ratio above 10:1. In addition, N : S ratios between 7:1 and 10:1 promoted plant yield and enhanced overall appearance. Therefore, to produce broccoli (and potentially other Brassicaceae) with higher crop yields and enhanced product quality in the field, it is vital to establish the optimal S and N nutritional status of the plant and to integrate this information into crop-management strategy programs. [source]