Frequency Divider (frequency + divider)

Distribution by Scientific Domains


Selected Abstracts


Low power dual transformer injection locked frequency divider using 0.5 ,m GaAs E/D-mode PHEMTs process

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 10 2010
Po-Yu Ke
Abstract This letter proposes a new divide-by-2 injection locked frequency divider (ILFD) fabricated by 0.5 ,m GaAs ED-Mode PHEMTs process and describes the operation principle of the dual-transformer ILFD. The first transformer is applied to replace two inductors of the cross-couple LC-tank oscillator circuit. The injection signal of the ILFD transmits into a transistor through a second transformer, which consisted of a bandpass filter achieving a high injection signal power and wide locking range. The measurement results show that the divider's free-running frequency were from 6.47 to 9.54 GHz (32.2%) with 3 V supply voltage. With an incident power of 0 dBm, the locking range is 3.07 GHz from the incident frequency 16.41 to 19.45 GHz (15.6%). The measured phase noise of free running VCO is ,92.2 dBc/Hz at 1 MHz offset frequency at 9.45 GHz and this value of the locked ILFD is ,128.4 dBc/Hz, which is 36.2 dB lower than the free running VCO. The core power consumption was 42 mW. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52:2302,2306, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25442 [source]


A 90 nm CMOS dual-band divide-by-2 and -4 injection-locked frequency divider

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 6 2010
Sheng-Lyang Jang
Abstract A fourth-order resonator has been implemented to design a 65 GHz injection-locked frequency divider (ILFD) implemented in a 90 nm CMOS process. The ILFD is realized with a cross-coupled nMOS LC-tank oscillator with an inductor switch for frequency band selection. The LC tank can be a second-or fourth-order resonator depending upon the on/off state of a switch across a series-tuned inductor. Measurement results show that at the supply voltage of 0.5 V, the free-running frequency is from 8.68 (16.147) to 9.928 (17.89) GHz for the low- (high-) frequency band. The divide-by-2 operational locking range is from 14.9 (30.64) to 22.2 (37.74) GHz for the low-(high)-frequency band. The divide-by-4 operational locking range is from 34.4 (64.6) to 40.35 (67) GHz for the low-(high)-frequency band. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1421,1425, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25217 [source]


Low power wide-locking range CMOS quadrature injection-locked frequency divider

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 10 2009
Sheng-Lyang Jang
Abstract This letter presents a new low power and wide-locking range divide-by-2 injection-locked frequency divider (ILFD). The ILFD consists of a new 5.35 GHz quadrature voltage controlled oscillator (QVCO) and two NMOS switches, which are in parallel with the QVCO resonators for signal injection. The proposed CMOS ILFD has been implemented with the TSMC 0.18 ,m CMOS technology and the core power consumption is 5.72 mW at the supply voltage of 0.8 V. The free-running frequency of the QILFD is tunable from 5.24 to 5.55 GHz. At the input power of 0 dBm, the divide-by-2 locking range is from 8.2 to 13.3 GHz as the tuning voltage is biased at 0.8 V. The phase noise of the locked output spectrum is lower than that of free running ILFD in the divide-by-2 mode. The phase deviation of quadrature output is about 1.28°. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2420,2423, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24640 [source]


Divide-by-3 LC injection-locked frequency divider with inductor over MOS topology

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 4 2008
Sheng-Lyang Jang
Abstract This letter proposes a divide-by-3 frequency divider employing inductor-over MOS topology to reduce the chip area and chip cost; the divider was fabricated using the 0.35-,m 2P4M CMOS technology. The divider consists of an nMOS cross-coupled LC oscillator and two injection MOSFETs in series with the cross-coupled NMOSFETs, and the LC resonator is composed of two inductors and varactors. At the supply voltage of 1.6 V, the divider free-running frequency is tunable from 2.17 to 2.43 GHz, and at the incident power of 0 dBm the locking range is about 1.03 GHz (14.9%), from the incident frequency 6.41 to 7.44 GHz. The core power consumption is 15.1 mW. The die area is 0.753 × 0.786 mm2. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 988,992, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23279 [source]


A varactorless CMOS direct-injection locked frequency divider

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 3 2008
S.-L. Jang
Abstract This paper presents a new integrated direct-injection locked frequency (ILFD) with the capability of quadrature generation. The circuit consists of a quadrature VCO, based on the cross-coupling of two differential LC-tank VCOs and with the coupling transistors placed in parallel with the switch transistors, and two direct injection MOSFETs. No varactors are used, and feedback is applied for frequency tuning. The circuit is implemented using a standard 0.35 ,m CMOS process. Measurement results show that at the supply voltage of 3.3 V, the core power consumption is 27 mW. The free-running ILFD is tunable from 1.5 to 1.98 GHz and the locking range is 2.92,4.26 GHz at 0 dBm. The measured phase noise of free-running ILFD is ,118.3 dBc/Hz while the locked quadrature output phase noise is ,126.7 dBc/Hz at 1 MHz offset frequency from the oscillation frequency of 1.98 GHz, which is 8.4 dB lower than the free running ILFD. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 608,611, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23165 [source]


A complementary Hartley injection-locked frequency divider

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 11 2007
Sheng-Lyang Jang
Abstract This work proposes a new injection-locked frequency divider (ILFD) based on the differential complementary Hartley VCO topology. At the supply voltage of 1.8 V, the tuning range of the free running ILFD is from 7.54 to 7.94 GHz, about 400 MHz, and the locking range of the ILFD is from 14.94 to 16.05 GHz, about 1.11 GHz, at the injection signal power of 0 dBm. The ILFD dissipates 13.54 mW at the supply voltage of 1.8 V and was fabricated in the 1P6M 0.18 ,m CMOS process. The phase noise of the locked ILFD tracks with the low-phase-noise injection source. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2817,2820, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22834 [source]


Injection-locked GaInp/GaAs HBT frequency divider with stacked transformers

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 10 2007
Hung-Ju Wei
Abstract The first integrated GaInP/GaAs heterojunction bipolar transistor (HBT) injection-locked frequency divider (ILFD) with the stacked transformers is demonstrated around 10 GHz. The stacked transformers formed by only two metal layers provide the inductive coupling in the cross feedback and separate biasing for base and collector to allow for the larger output swing in the LC tank and obtaining wide locking range. Under the supply voltage of 5 V and core power consumption of 20.5 mW, the locking range is 7.8% of the center operating frequency. The chip size of the entire ILFD including probing pads is 1.0 × 1.0 mm2. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2602,2605, 2007; Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/mop.22737 [source]


Application of the envelope-transient method to the analysis and design of autonomous circuits

INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 6 2005
Almudena Suárez
Abstract The envelope transient enables a very efficient simulation of circuits with two different time scales, such as those that contain modulated signals (for example, amplifier or mixers), where an accurate prediction of intermodulation distortion is needed. The method has also been extended to oscillator analysis, where it requires additional techniques in order to avoid convergence to degenerate mathematical solutions, for which the circuit is not actually oscillating. It allows an efficient analysis of transients in these circuits and an accurate prediction of the phase-noise spectrum. This article presents an overview of the envelope-transient method and its most recent applications to the simulation of autonomous circuits, such as free and forced oscillators, frequency dividers, and phase-locked loops. Using this method, the operation bands of these circuits (which are delimited by qualitative stability changes or bifurcations) can be determined in a straightforward manner. This technique can also be applied to predict intermodulation distortion in self-oscillating mixers and to simulate the response of synchronized oscillators containing modulated signals. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2005. [source]