Frame Shift (frame + shift)

Distribution by Scientific Domains

Terms modified by Frame Shift

  • frame shift mutation

  • Selected Abstracts


    A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy

    GENES, BRAIN AND BEHAVIOR, Issue 7 2009
    H. Suzuki
    The lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic,clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS. [source]


    Two C-Terminal Variants of NBC4, a New Member of the Sodium Bicarbonate Cotransporter Family: Cloning, Characterization, and Localization

    IUBMB LIFE, Issue 1 2000
    Alexander Pushkin
    Abstract We report the cloning, characterization, and chromosomal assignment of a new member of the sodium bicarbonate cotransporter (NBC) family, NBC4. The NBC4 gene was mapped to chromosome 2p13 and is a new candidate gene for Alstrom syndrome. Two variants of the transporter have been isolated from human testis and heart, which differ in their C termini. NBC4a encodes a 1137-residue polypeptide and is widely expressed in various tissues, including liver, testis, and spleen. NBC4b is identical to NBC4a except that it has a 16-nucleotide insert, creating a C-terminal frame shift. NBC4b encodes a 1074-residue polypeptide and is highly expressed in heart. Amino acids 1-1046 are common to both NBC4 variants. NBC4a has two protein-interacting domains that are lacking in NBC4b: a proline-rich sequence, PPPSVIKIP (amino acids 1102-1110), and a consensus PDZ-interacting domain, SYSL (1134-1137). NBC4b lacks the stretch of charged residues present in the C terminus of NBC4a and other members of the NBC family.Unlike other members of the NBC family, both NBC4a and NBC4b have a unique glycine-rich region (amino acids 440- 469). In comparison with other members of the bicarbonate transport superfamily, NBC4a and NBC4b are most similar structurally to the electrogenic sodium bicarbonate cotransporters (NBC1). [source]


    Genital herpes due to acyclovir-sensitive herpes simplex virus caused secondary and recurrent herpetic whitlows due to thymidine kinase-deficient/temperature-sensitive virus

    JOURNAL OF MEDICAL VIROLOGY, Issue 11 2007
    Yuka Shimada
    Abstract Herpes simplex virus (HSV)-2 caused a genital ulcer in a 40-year-old allogenic stem cell recipient, and a secondary herpetic whitlow appeared during 2 months of acyclovir (ACV) therapy. Both genital ulcer, and whitlow were cured 3 months later, but 6 months after recovery the whitlow alone recurred. DNA of the genital, first, and recurrent whitlow isolates showed similar endonuclease digestion fragment profiles. The genital virus was ACV-sensitive, and the two whitlow isolates were ACV-resistant/thymidine kinase (TK)-deficient. The TK gene of the whitlow isolates had the same frame shift from the 274th amino acid and termination at the 347th amino acid due to the deletion of a cytosine at the 819th nucleotide. Because the temperature of the thumb is 33/34°C or lower, the temperature sensitivity of the isolates were compared, and both whitlow isolates were significantly more temperature-sensitive (ts) at 39°C than the genital isolate. The two whitlow isolates showed cutaneous pathogenicity in mouse ear pinna but not midflank, while the genital isolate was pathogenic at both sites, suggesting that temperature adaptation was an important element of pathogenicity in the whitlow. The virus populations of isolates of the genital, and first whitlow were examined by 31, and 82 clones, respectively, and the clones from genital, and whitlow isolates were ACV-sensitive, and -resistant, respectively, showing their homogeneity. The acyclovir-sensitive genital lesion had spread as a TK-deficient/ts herpetic whitlow during ACV treatment, and an apparently TK-deficient virus adapted to the local temperature might have caused the whitlow recurrence. J. Med. Virol. 79:1731,1740, 2007. © 2007 Wiley-Liss, Inc. [source]


    Identification of four novel mutations in five unrelated Korean families with Fabry disease

    CLINICAL GENETICS, Issue 3 2000
    J-K Lee
    Fabry disease is a X-linked recessively inherited metabolic disorder, which results from the deficient activity of the lysosomal hydrolase ,-galactosidase A leading to the systemic deposition of glycosphingolipids with terminal ,-galactosyl moieties. Single-strand conformation polymorphism (SSCP) analysis was performed, followed by DNA sequencing of PCR amplified exons of the human ,-galactosidase A gene in 5 unrelated Korean patients with classic Fabry disease. Five different mutations were identified; two nonsense mutations (Y86X and R342X), one missense mutation (D266N), and two small deletions (296del2 and 802del4). Except for R342X mutation, four were novel mutations (Y86X, D266N, 296del2, 802del4). A T to G transversion at nucleotide position 5157 in exon 2 caused a tyrosine-to-stop substitution at codon 86. A G to A transition at position 10 287 in exon 5 substituted an asparagine for an aspartate at codon 266. Mutation 296del2 in exon 2 resulted in a frame shift with a stop signal at the 22th codon downstream from the mutation, whereas mutation 802del4 resulted in a stop codon at the site of 4 bp deletion. In addition, the 802del4 was found to be a de novo mutation. This is the first report on mutation analysis of the human ,-galactosidase A gene in Korean patients with Fabry disease. [source]