Home About us Contact | |||
Fragment Area (fragment + area)
Selected AbstractsEcological correlates of abundance in the Tana mangabey (Cercocebus galeritus)AMERICAN JOURNAL OF PRIMATOLOGY, Issue 3 2004Julie Wieczkowski Abstract I investigated the ecological correlates of abundance in the Tana mangabey (Cercocebus galeritus), one of the world's most endangered primates, with the goal of recommending management strategies. I systematically selected 31 forest fragments throughout the mangabey's 60-km distribution along the lower Tana River in southeastern Kenya. Within the 31 fragments, I measured vegetation structure, food abundance, and human forest product use in 107 belt transects, and conducted 370 mangabey surveys. I used a weighted multiple regression analysis to determine whether there was a dependence between the selected forest attributes and the mean number of mangabey groups per fragment. Fragment area and density of trees ,10 cm diameter at breast height (DBH) were the only variables that significantly correlated with the variation in mangabey abundance. No additional variables were significant when the analysis was limited to forest fragments inside the Tana River Primate National Reserve (TRPNR) or to fragments outside the TRPNR. When I estimated the resources available before recent human forest product use by adding nonharvested and harvested variables, the total basal area of the top 15 food species became significant. This was only within the TRPNR, however. Management, therefore, should focus on increasing forest area, density of trees ,10 cm DBH, and coverage of food trees throughout the mangabey's distribution. Solutions must be found for the problem of forest clearing, and forest product use must be better managed to protect the habitat of this critically endangered primate. The significance of food abundance only within the TRPNR suggests a need to collect dietary data from mangabey groups in fragments toward the southern limit of the mangabey's distribution, where plant species composition differs from that in fragments in which dietary data have been previously collected. Am. J. Primatol. 63:125,138, 2004. © 2004 Wiley-Liss, Inc. [source] Island biogeography and landscape ecology of mammals inhabiting fragmented, temperate rain forestsGLOBAL ECOLOGY, Issue 2 2001Mark V. Lomolino Abstract 1We expanded the island biogeography paradigm to test whether mammalian communities of the heavily fragmented temperate rain forests of the Olympic Peninsula were influenced by local environmental conditions, biogeographic factors (fragment area and isolation) and characteristics of the surrounding landscape. 2We used live-trapping, sign surveys and infra-red triggered cameras to compare distributions of non-volant mammals among fragments and between fragments and other principal landscape components (continuous old-growth, riparian corridors, second-growth forest and clearcuts). 3Of the 24 species of non-volant mammals detected during our studies, 18 occurred in at least one fragment. 4Species richness of old-growth mammals was not significantly correlated with fragment area or isolation, per se, but was significantly and positively correlated with the amount of old-growth fragments and old second-growth (41,159 years) in the surrounding landscape (r2 = 0.95, P < 0.005). 5Distributions of three old-growth dependent species [shrew-mole (Neurotrichus gibbsii), Douglas squirrel (Tamiasciurus douglasii) and Trowbridge shew (Sorex trowbridgii)] were significantly associated with local environmental conditions within the fragment, with geographical isolation from continuous old-growth and riparian corridors, and with the amount of old-growth and old second growth in the adjacent matrix. [source] The effects of edge, fragment size and degree of isolation on avian species richness in highly fragmented forest in West AfricaIBIS, Issue 2 2007S. MANU Almost nothing is known of the effects of forest fragmentation on bird diversity within the heavily degraded and fragmented forest remnants in West Africa. We examined the effects of edge, fragment size and isolation on bird species richness in southwestern Nigeria where forest fragmentation is pronounced. In total, 122 km of line transects were used to survey birds and vegetation within 45 forest patches between January 2000 and March 2002: 197 species were recorded. Avian species number and total counts in forest patches were unrelated to fragment area (within the observed range of 14,445 ha), but were negatively influenced by degree of isolation and increasing distance from the edge. As the total area of forested land within 15 km of a patch fell from 4 to 0%, so 21% of species were lost. In total, six and zero species (of 154 recorded more than once) were consistently recorded in the larger and smaller forest fragments, respectively, and four and two bird species were consistently recorded in unisolated and isolated forest fragments, respectively, suggesting that the addition of ,edge' species did not compensate for loss of species sensitive to fragmentation. Diversity index was not affected by either fragment area or degree of isolation, but decreased with distance from the edge. When individual species counts were considered, 68% of species (n = 62) showed no significant effect of distance to edge. Of those 20 species which showed an effect, 12 were less common close to the edge. Most species (65%) did not respond significantly to increasing isolation but of those 22 species that did, 20 were less common in more isolated fragments. Ninety-seven per cent of species showed no significant response to area. As avian diversity and species composition, but not species number, were apparently insensitive to forest fragmentation, our findings suggest that fragmentation reduces the probability of occurrence of a wide range of West African bird species, rather than a subset of fragmentation-sensitive species. The greater apparent sensitivity of present-day West African forest bird communities to fragmentation rather than patch size might reflect previous extinctions of area-sensitive species. Minimizing further forest fragmentation might be the most effective means of conserving avian diversity in current West African landscapes where most remaining forest patches are small (i.e. < 500 ha). [source] Scale-dependent responses to forest cover displayed by frugivore batsOIKOS, Issue 11 2008Naiara Pinto Despite vast evidence of species turnover displayed by Neotropical bat communities in response to forest fragmentation, the exact shape of the relationship between fragment area and abundance for individual bat species is still unclear. Bats' ample variation in diet, morphology, and movement behaviour can potentially influence species' perception of the landscape. Thus, studies describing fragment area at a single spatial scale may fail to capture the amount of forest available from the perspective of individual bat species. In the present paper, we study the influence of forest cover on bats inhabiting a fragmented forest in Mexico, focusing on some of the most common frugivore species: Artibeus jamaicensis, Carollia spp. (C. brevicauda/C. perspicillata) and Sturnira spp. (S. lilium/S. ludovici). We quantified forest cover at scales ranging from 50 to 2000,m, and measured the influence of forest cover on bat capture success, a surrogate for abundance. The three species displayed positive and significant scale-dependent associations with forest cover. Abundance of A. jamaicensis increased with forest cover measured at scales ranging between 500 and 2000,m, while Carollia spp. responded more strongly to variation in forest cover measured at scales 100,500,m. For Sturnira spp., abundance was a function of presence of creeks near mist-netting sites, and amount of secondary forest present at a 200,m scale. The observed variation in responses to forest cover can be explained in light of interspecific differences in diet, home range, and body size. Our results illustrate a method for measuring the effect of forest fragmentation on mobile species and suggest that changes in abundance in fragmented landscapes emerge from the interaction between species' traits and landscape structure. [source] |