Home About us Contact | |||
Fracture Load (fracture + load)
Selected AbstractsFracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restorationINTERNATIONAL ENDODONTIC JOURNAL, Issue 5 2010M. Schmitter Schmitter M, Lippenberger S, Rues S, Gilde H, Rammelsberg P. Fracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restoration. International Endodontic Journal, 43, 436,442, 2010. Abstract Objective, The hypothesis of this study was that the fracture load of incisor teeth restored using short, threaded, parallel-sided posts (TMP) is, under special conditions, not inferior to that of teeth restored using long TMPs or fibre-reinforced posts (FRP). Methodology, Seventy-two maxillary incisors and 72 mandibular incisors were collected. Sixty-four in each group were root filled; in half of these FRPs were cemented, and in the other half TMPs were used. Half of the FRPs were pretreated; the others were not pretreated. In the TMP-group, half of the teeth received a long post (10 mm), the other half a short post (3 mm). Crowns were fabricated and cemented with Ketac-cem or Panavia. Eight maxillary incisors and eight mandibular incisors with intact natural crowns were used as control groups. All specimens were loaded until fracture. Results, Fracture loads were higher for pretreated FRPs than for untreated FRPs. If the FRPs were not pretreated, fracture loads for maxillary incisors after use of short metal posts were significantly higher (248 N compared with 133 N, P = 0.027). Fracture loads for teeth restored using long TMPs were not higher than for teeth restored using short TMPs (277 N compared with 266 N). Fracture loads for mandibular incisors restored using long (10 mm) pretreated FRP were higher than for mandibular incisors restored using short (3 mm) metal posts (436 N compared with 285 N). Cementation of the crowns using an adhesive resin cement did not increase the fracture load for mandibular incisors, whereas for maxillary incisors, this cementation technique tended to increase fracture loads in teeth restored with FRP, although this increase was not significant at the P < 0.05 level (P = 0.06). In both groups, fracture loads were higher for mandibular incisors. Conclusions, Short, threaded, parallel-sided metal posts might be an alternative to fibre- reinforced posts for maxillary incisors, for teeth with short roots or when FRP cannot be pretreated. [source] Fracture Resistance of Fiber-Reinforced PMMA Interim Fixed Partial DenturesJOURNAL OF PROSTHODONTICS, Issue 4 2006Tamer A. Hamza BDS Purpose: To compare different fiber reinforcements on fracture toughness of interim polymethyl methacrylate materials and then use the best combination to determine the optimal position for fiber placement in an interim 3-unit fixed partial denture (FPD). Materials and Methods: In the first stage of the study, five groups of notched fracture toughness specimens were fabricated and loaded to failure (Instron): (1) unreinforced (control); (2) reinforced with pre-impregnated silanized E-glass fibers (Fibrestick); (3) cold plasma-treated woven polyethylene fibers (Ribbond triaxial); (4) pre-impregnated silanized plasma-treated woven polyethylene fibers (Construct); and (5) 1.0-mm-diameter stainless steel wire. In the second stage, the optimal position (occlusal, middle, or cervical third of pontic) for reinforcement with glass fibers (regimen 2) was tested by loading a 3-unit FPD to failure. All groups were compared with analysis of variance (, < 0.05). Results: The fracture toughness (in MPam1/2) for each reinforced group (Fibrestick 2.74 ± 0.12, Construct fibers 2.59 ± 0.28, Ribbond triaxial 2.13 ± 0.20, and orthodontic wire 1.66 ± 0.09) was statistically greater (p< 0.05) than for the unreinforced group (control = 1.25 ± 0.006). Fracture loads for FPDs were greatest when the fiber reinforcements were placed in the cervical third (cervical = 1165 N). Conclusions: The use of fiber and, to a lesser extent, orthodontic wire is an effective method to reinforce interim restoration resins. [source] Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materialsEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 4 2008Florian Beuer The purpose of this in vitro study was to compare the load-bearing capacity of posterior three-unit fixed dental prostheses (FDP) produced with three different all-ceramic framework materials: glass-infiltrated alumina (ICA), glass-infiltrated alumina strengthened with zirconia (ICZ), and yttria-stabilized polycrystalline zirconia (YZ). Additionally, the influence on aging of mechanical cyclic fatigue loading and thermal cycling in water were evaluated. A total of 20 frameworks each were fabricated from ICA, ICZ, and YZ by a computer-aided design (CAD)/computer-aided manufacturing (CAM) system. The framework designs were identical for all specimens. All frameworks were veneered with porcelain and cemented with glass,ionomer. Prior to fracture testing, 10 FDP of each experimental group were subjected to thermal and mechanical cycling. Additionally, fractographic analysis was performed. Statistical analysis showed that FDP made from YZ had significantly higher load to failure, whereas no difference was found between the other two materials. Aging did not have a significant effect on the fracture load. [source] Fracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restorationINTERNATIONAL ENDODONTIC JOURNAL, Issue 5 2010M. Schmitter Schmitter M, Lippenberger S, Rues S, Gilde H, Rammelsberg P. Fracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restoration. International Endodontic Journal, 43, 436,442, 2010. Abstract Objective, The hypothesis of this study was that the fracture load of incisor teeth restored using short, threaded, parallel-sided posts (TMP) is, under special conditions, not inferior to that of teeth restored using long TMPs or fibre-reinforced posts (FRP). Methodology, Seventy-two maxillary incisors and 72 mandibular incisors were collected. Sixty-four in each group were root filled; in half of these FRPs were cemented, and in the other half TMPs were used. Half of the FRPs were pretreated; the others were not pretreated. In the TMP-group, half of the teeth received a long post (10 mm), the other half a short post (3 mm). Crowns were fabricated and cemented with Ketac-cem or Panavia. Eight maxillary incisors and eight mandibular incisors with intact natural crowns were used as control groups. All specimens were loaded until fracture. Results, Fracture loads were higher for pretreated FRPs than for untreated FRPs. If the FRPs were not pretreated, fracture loads for maxillary incisors after use of short metal posts were significantly higher (248 N compared with 133 N, P = 0.027). Fracture loads for teeth restored using long TMPs were not higher than for teeth restored using short TMPs (277 N compared with 266 N). Fracture loads for mandibular incisors restored using long (10 mm) pretreated FRP were higher than for mandibular incisors restored using short (3 mm) metal posts (436 N compared with 285 N). Cementation of the crowns using an adhesive resin cement did not increase the fracture load for mandibular incisors, whereas for maxillary incisors, this cementation technique tended to increase fracture loads in teeth restored with FRP, although this increase was not significant at the P < 0.05 level (P = 0.06). In both groups, fracture loads were higher for mandibular incisors. Conclusions, Short, threaded, parallel-sided metal posts might be an alternative to fibre- reinforced posts for maxillary incisors, for teeth with short roots or when FRP cannot be pretreated. [source] Effect of disinfection by microwave irradiation on the strength of intact and relined denture bases and the water sorption and solubility of denture base and reline materialsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Rosangela Seiko Seó Abstract This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2-mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37°C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 mm × 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection at fracture (mm), fracture energy (N mm), water sorption (%), and solubility (%) were analyzed by two-way analysis of variance and Student,Newman,Keuls tests (, = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Hip Fractures and the Contribution of Cortical Versus Trabecular Bone to Femoral Neck Strength,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2009Gerold Holzer Abstract Osteoporotic fractures are caused by both cortical thinning and trabecular bone loss. Both are seen to be important for bone fragility. The relative contributions of cortical versus trabecular bone have not been established. The aim of this study was to test the contribution of cortical versus trabecular bone to femoral neck stability in bone strength. In one femur from each pair of 18 human cadaver femurs (5 female; 4 male), trabecular bone was completely removed from the femoral neck, providing one bone with intact and the other without any trabecular structure in the femoral neck. Geometrical, X-ray, and DXA measurements were carried out before biomechanical testing (forces to fracture). Femoral necks were osteotomized, slices were analyzed for cross-sectional area (CSA) and cross-sectional moment of inertia (CSMI), and results were compared with biomechanical testing data. Differences between forces needed to fracture excavated and intact femurs (,F/F mean) was 7.0% on the average (range, 4.6,17.3%). CSA of removed spongiosa did not correlate with difference of fracture load (,F/F mean), nor did BMD. The relative contribution of trabecular versus cortical bone in respect to bone strength in the femoral neck seems to be marginal and seems to explain the subordinate role of trabecular bone and its changes in fracture risk and the effects of treatment options in preventing fractures. [source] Factorial designed experiment to study the effects of excipients on the mechanical properties of pelletsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2006Abraham B. Bashaiwoldu The aim of this work was to determine the effects of formulation factors on the mechanical properties of pellets produced by the process of extrusion and spheronisation. A range of properties from a simple fracture load to detailed load/displacement curves were used to study the effects of the levels of lactose monohydrate and glyceryl monostearate on the mechanical properties of pellets in terms of their surface tensile strength, pellet deformability and linear strain. A series of independent 22 -factorial designs were employed to establish the relationships between composition of the formulations and pellet properties, whereby the concept of an excess variable was explored. It was found that the spheronisation aid used, microcrystalline cellulose, is the domineering factor in most mechanical properties studied, except for the surface tensile strength, which decreased significantly with an increase in glyceryl monostearate concentration. The change in binder liquid from water to a water/ethanol mixture further changed the behaviour of the systems significantly. The assumption of an excess variable being less critical for the statistical outcome of a factorial experiment has not been found feasible for the systems studied. [source] Comparison of Repair Methods for Ceramic-Fused-to-Metal CrownsJOURNAL OF PROSTHODONTICS, Issue 5 2006Mutlu Özcan DMD Purpose: The objective of this study was to evaluate the effect of four repair methods on the fracture load of repaired ceramic-fused-to-metal crowns. Materials and Methods: Metal-ceramic crowns were fractured, and the failure load was measured. The fractured metal-ceramic crowns (n = 9) were assigned randomly to the following treatment groups: (1) hydrofluoric acid (9.5%) etching, (2) air-particle abrasion (50 ,m Al2O3), (3) silica coating (30 ,m SiOx), and (4) the application of a layer of glass fiber-reinforced composite (FRC) (thickness: 0.12 mm) on the repair surface. The crowns were repaired with a highly filled resin composite and subjected to 3 repair cycles (n = 27). All specimens were stored in water at 37°C for 24 hours and then thermocycled (6000 cycles, 5°C to 55°C). The fracture load values for final failure of intact and repaired crowns were measured with a universal testing machine, and failure types were recorded. Results: No significant differences ( p > 0.05) were found between the final failure values for the groups treated with 9.5% hydrofluoric acid (376 N) and airborne particle abrasion with either Al2O3 (432 N) or SiOx (582 N) followed by silanization, respectively. Significantly, higher ( p < 0.0001) final failure values (885 N) were obtained with the use of the FRC layer when compared with the other repaired groups. There was no significant difference ( p > 0.05) between the final fracture load of intact crowns (872 N) and those repaired with FRC (885 N) (One-way ANOVA with repeated measures, Bonferroni test). No significant difference in fracture loads was found between the 1st, 2nd, and 3rd repair cycles (558 N, 433 N, 485 N, respectively). Failure sites were predominantly at the alloy/veneering resin interface in Group 1; Groups 2 and 3 both showed more cohesive failures than Group 1. In the case of FRC, the failure pattern was exclusively cohesive between the two laminates of FRC layer. Conclusions: The conditioning methods (Groups 1 to 3) of the repair surfaces did not show differences between each other; each resulted in mean fracture loads at lower levels than that of the intact crowns. Addition of an FRC layer increased the fracture load to the level of intact crowns. This suggests that the use of FRC in repairs of metal-ceramic crowns might be a viable option. [source] Embedded Shape-Memory Alloy Wires for Improved Performance of Self-Healing Polymers,ADVANCED FUNCTIONAL MATERIALS, Issue 15 2008Eva L. Kirkby Abstract We report the first measurements of self-healing polymers with embedded shape-memory alloy (SMA) wires. The addition of SMA wires shows improvements of healed peak fracture loads by up to a factor of 1.6, approaching the performance of the virgin material. Moreover, the repairs can be achieved with reduced amounts of healing agent. The improvements in performance are due to two main effects: (i) crack closure, which reduces the total crack volume and increases the crack fill factor for a given amount of healing agent and (ii) heating of the healing agent during polymerization, which increases the degree of cure of the polymerized healing agent. [source] Fracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restorationINTERNATIONAL ENDODONTIC JOURNAL, Issue 5 2010M. Schmitter Schmitter M, Lippenberger S, Rues S, Gilde H, Rammelsberg P. Fracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restoration. International Endodontic Journal, 43, 436,442, 2010. Abstract Objective, The hypothesis of this study was that the fracture load of incisor teeth restored using short, threaded, parallel-sided posts (TMP) is, under special conditions, not inferior to that of teeth restored using long TMPs or fibre-reinforced posts (FRP). Methodology, Seventy-two maxillary incisors and 72 mandibular incisors were collected. Sixty-four in each group were root filled; in half of these FRPs were cemented, and in the other half TMPs were used. Half of the FRPs were pretreated; the others were not pretreated. In the TMP-group, half of the teeth received a long post (10 mm), the other half a short post (3 mm). Crowns were fabricated and cemented with Ketac-cem or Panavia. Eight maxillary incisors and eight mandibular incisors with intact natural crowns were used as control groups. All specimens were loaded until fracture. Results, Fracture loads were higher for pretreated FRPs than for untreated FRPs. If the FRPs were not pretreated, fracture loads for maxillary incisors after use of short metal posts were significantly higher (248 N compared with 133 N, P = 0.027). Fracture loads for teeth restored using long TMPs were not higher than for teeth restored using short TMPs (277 N compared with 266 N). Fracture loads for mandibular incisors restored using long (10 mm) pretreated FRP were higher than for mandibular incisors restored using short (3 mm) metal posts (436 N compared with 285 N). Cementation of the crowns using an adhesive resin cement did not increase the fracture load for mandibular incisors, whereas for maxillary incisors, this cementation technique tended to increase fracture loads in teeth restored with FRP, although this increase was not significant at the P < 0.05 level (P = 0.06). In both groups, fracture loads were higher for mandibular incisors. Conclusions, Short, threaded, parallel-sided metal posts might be an alternative to fibre- reinforced posts for maxillary incisors, for teeth with short roots or when FRP cannot be pretreated. [source] Comparison of Repair Methods for Ceramic-Fused-to-Metal CrownsJOURNAL OF PROSTHODONTICS, Issue 5 2006Mutlu Özcan DMD Purpose: The objective of this study was to evaluate the effect of four repair methods on the fracture load of repaired ceramic-fused-to-metal crowns. Materials and Methods: Metal-ceramic crowns were fractured, and the failure load was measured. The fractured metal-ceramic crowns (n = 9) were assigned randomly to the following treatment groups: (1) hydrofluoric acid (9.5%) etching, (2) air-particle abrasion (50 ,m Al2O3), (3) silica coating (30 ,m SiOx), and (4) the application of a layer of glass fiber-reinforced composite (FRC) (thickness: 0.12 mm) on the repair surface. The crowns were repaired with a highly filled resin composite and subjected to 3 repair cycles (n = 27). All specimens were stored in water at 37°C for 24 hours and then thermocycled (6000 cycles, 5°C to 55°C). The fracture load values for final failure of intact and repaired crowns were measured with a universal testing machine, and failure types were recorded. Results: No significant differences ( p > 0.05) were found between the final failure values for the groups treated with 9.5% hydrofluoric acid (376 N) and airborne particle abrasion with either Al2O3 (432 N) or SiOx (582 N) followed by silanization, respectively. Significantly, higher ( p < 0.0001) final failure values (885 N) were obtained with the use of the FRC layer when compared with the other repaired groups. There was no significant difference ( p > 0.05) between the final fracture load of intact crowns (872 N) and those repaired with FRC (885 N) (One-way ANOVA with repeated measures, Bonferroni test). No significant difference in fracture loads was found between the 1st, 2nd, and 3rd repair cycles (558 N, 433 N, 485 N, respectively). Failure sites were predominantly at the alloy/veneering resin interface in Group 1; Groups 2 and 3 both showed more cohesive failures than Group 1. In the case of FRC, the failure pattern was exclusively cohesive between the two laminates of FRC layer. Conclusions: The conditioning methods (Groups 1 to 3) of the repair surfaces did not show differences between each other; each resulted in mean fracture loads at lower levels than that of the intact crowns. Addition of an FRC layer increased the fracture load to the level of intact crowns. This suggests that the use of FRC in repairs of metal-ceramic crowns might be a viable option. [source] Engine-Driven Preparation Of Curved Root Canals: Measuring Cyclic Fatigue And Other Physical Parameters,AUSTRALIAN ENDODONTIC JOURNAL, Issue 1 2002Ove A. Peters Dr med dent An increasing number of engine-driven rotary systems are marketed to shape root canals. Although these systems may improve the quality of canal preparations, the risk for instrument fracture is also increased. Unfortunately, the stresses generated in rotary instruments when shaping curved root canals have not been adequately studied. Consequently, the aim of an ongoing project was to develop a measurement platform that could more accurately detail physical parameters generated in a simulated clinical situation. Such a platform was constructed by fitting a torque-measuring device between the rotating endodontic instrument and the motor driving it. Apically directed force and instrument insertion depth were also recorded. Additional devices were constructed to assess cyclic fatigue and static fracture loads. The current pilot study evaluated GT rotary instruments during the shaping of curved canals in plastic blocks as well as "ISO 3630,1 torque to fracture" and number of rotations required for fatigue fracture. Results indicated that torques in excess of 40Nmm were generated by rotary GT-Files, a significantly higher figure than static fracture loads (less than 13Nmm for the size 20. 12 GT-File). Furthermore, the number of rotations needed to shape simulated canals with a 5 mm radius of curvature in plastic blocks was 10 times lower than the number of rotations needed to fracture instruments in a "cyclic fatigue test". Apical forces were always greater than IN, and in some specimens, scores of 8N or more were recorded. Further studies are required using extracted natural teeth, with their wide anatomical variation, in order to reduce the incidence of fracture of rotary instruments. In this way, the clinical potential of engine-driven rotary instruments to safely prepare curved canals can be fully appreciated. [source] |