Fracture Aperture (fracture + aperture)

Distribution by Scientific Domains


Selected Abstracts


From Micro to Meso: an exercise in determining hydraulic conductivity of fractured sandstone cores from detailed characterization of the fractures

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2006
Salima Baraka-Lokmane
SUMMARY Hydraulic conductivities of fractured sandstone bore cores of 0.1 m in diameter are calculated using detailed characterization of the fracture geometry parameters determined using a resin casting technique. The accuracy of the measurements was about 0.25,1.25 ,m with the image size used. The values of the effective fracture apertures vary between 10 ,m and 50 ,m. For modelling purposes the samples are sectioned serially, perpendicular to the flow direction along the cylinder axis. The hydraulic conductivity of individual slices is estimated by summing the contribution of the matrix (assumed uniform) and each fracture (depending on its length and aperture). Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical upscaling compare favourably with actual conductivity measured in hydraulic and pneumatic experiments carried out prior to sectioning. This study shows that the determination of larger-scale conductivity can be achieved, based on the evaluation of fracture geometry parameters (e.g. fracture aperture, fracture width and fracture length), measured using an optical method, at least at the laboratory scale. [source]


Analysis of a Vertical Dipole Tracer Test in Highly Fractured Rock

GROUND WATER, Issue 5 2002
William E. Sanford
The results of a vertical dipole tracer experiment performed in highly fractured rocks of the Clare Valley, South Australia, are presented. The injection and withdrawal piezometers were both screened over 3 m and were separated by 6 m (midpoint to midpoint). Due to the long screen length, several fracture sets were intersected, some of which do not connect the two piezometers. Dissolved helium and bromide were injected into the dipole flow field for 75 minutes, followed by an additional 510 minutes of flushing. The breakthrough of helium was retarded relative to bromide, as was expected due to the greater aqueous diffusion coefficient of helium. Also, only 25% of the total mass injected of both tracers was recovered. Modeling of the tracer transport was accomplished using an analytical one-dimensional flow and transport model for flow through a fracture with diffusion into the matrix. The assumptions made include: streamlines connecting the injection and withdrawal point can be modeled as a dipole of equal strength, flow along each streamline is one dimensional, and there is a constant Peclet number for each streamline. In contrast to many other field tracer studies performed in fractured rock, the actual travel length between piezometers was not known. Modeling was accomplished by fitting the characteristics of the tracer breakthrough curves (BTCs), such as arrival times of the peak concentration and the center of mass. The important steps were to determine the fracture aperture (240 ,m) based on the parameters that influence the rate of matrix diffusion (this controls the arrival time of the peak concentration); estimating the travel distance (11 m) by fitting the time of arrival of the centers of mass of the tracers; and estimating fracture dispersivity (0.5 m) by fitting the times that the inflection points occurred on the front and back limbs of the BTCs. This method works even though there was dilution in the withdrawal well, the amount of which can be estimated by determining the value that the modeled concentrations need to be reduced to fit the data (,50%). The use of two tracers with different diffusion coefficients was not necessary, but it provides important checks in the modeling process because the apparent retardation between the two tracers is evidence of matrix diffusion and the BTCs of both tracers need to be accurately modeled by the best fit parameters. [source]


Interpretation of the enhancement of field-scale effective matrix diffusion coefficient in a single fracture using a semi-analytical power series solution

HYDROLOGICAL PROCESSES, Issue 6 2009
Tai-Sheng Liou
Abstract A power series solution for convergent radial transport in a single fracture (PCRTSF) is developed. Transport processes considered in PCRTSF include advection and hydrodynamic dispersion in the fracture, molecular diffusion in the matrix, diffusive mass exchange across the fracture-matrix interface, and mixing effects in the injection and the extraction boreholes. An analytical solution in terms of a power series in Laplace domain is developed first, which is then numerically inverted by de-Hoog et al.'s algorithm. Four dimensionless parameters determine the behaviour of a breakthrough curve (BTC) calculated by PCRTSF, which are, in the order of decreasing sensitivity, the matrix diffusion factor, two mixing factors, and the Peclet number. The first parameter is lumped from matrix porosity, effective matrix diffusion coefficient, fracture aperture, and retardation factors. Its value increases as the matrix diffusion effect becomes significant. A non-zero matrix diffusion factor results in a , 3/2 slope of the tail of a log,log BTC, a common property for tracer diffusion into an infinite matrix. Both mixing factors have equal effects on BTC characteristics. However, the Peclet number has virtually no effect on BTC tail. PCRTSF is applied to re-analyse two published test results that were obtained from convergent radial tracer tests in a discrete, horizontal fracture in Silurian dolomite. PCRTSF is able to fit the field BTCs better than the original channel model does if a large matrix diffusion coefficient is used. Noticeably, the ratio of field-scale to lab-scale matrix diffusion coefficients can be as large as 378. This enhancement of the field-scale matrix diffusion coefficient may be ascribed to the presence of a degraded zone at the fracture-matrix interface because of karstic effects, or to flow channeling as a result of aperture heterogeneity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A three-dimensional integral equation model for calculating poro- and thermoelastic stresses induced by cold water injection into a geothermal reservoir

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2009
X. X. Zhou
Abstract Poro-mechanical and thermo-mechanical processes change the fracture aperture and thus affect the water flow pattern in the fracture during the cold water injection into enhanced geothermal systems (EGS). In addition, the stresses generated by these processes contribute to the phenomenon of reservoir seismicity. In this paper, we present a three-dimensional (3D) partially coupled poro-thermoelastic model to investigate the poroelastic and thermoelastic effects of cold water injection in EGS. In the model, the lubrication fluid flow and the convective heat transfer in the fracture are modeled by the finite element method, while the pore fluid diffusion and heat conductive transfer in the reservoir matrix are assumed to be 3D and modeled by the boundary integral equation method without the need to discretize the reservoir. The stresses at the fracture surface and in the reservoir matrix are obtained from the numerical model and can be used to assess the variation of in situ stress and induced seismicty with injection/extraction. Application of the model shows that rock cooling induces large tensile stresses and increases fracture conductivity, whereas the rock dilation caused by fluid leakoff decreases fracture aperture and increases compressive total stresses around the injection zone. However, increases in pore pressure reduce the effective stresses and can contribute to rock failure, fracture slip, and microseismic activity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


From Micro to Meso: an exercise in determining hydraulic conductivity of fractured sandstone cores from detailed characterization of the fractures

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2006
Salima Baraka-Lokmane
SUMMARY Hydraulic conductivities of fractured sandstone bore cores of 0.1 m in diameter are calculated using detailed characterization of the fracture geometry parameters determined using a resin casting technique. The accuracy of the measurements was about 0.25,1.25 ,m with the image size used. The values of the effective fracture apertures vary between 10 ,m and 50 ,m. For modelling purposes the samples are sectioned serially, perpendicular to the flow direction along the cylinder axis. The hydraulic conductivity of individual slices is estimated by summing the contribution of the matrix (assumed uniform) and each fracture (depending on its length and aperture). Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical upscaling compare favourably with actual conductivity measured in hydraulic and pneumatic experiments carried out prior to sectioning. This study shows that the determination of larger-scale conductivity can be achieved, based on the evaluation of fracture geometry parameters (e.g. fracture aperture, fracture width and fracture length), measured using an optical method, at least at the laboratory scale. [source]


Hydraulic pathways in the crystalline rock of the KTB

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000
Günter Zimmermann
Fracture systems and fluid pathways must be analysed in order to understand the dynamical processes in the upper crust. Various deterministic as well as stochastic fracture networks in the depth section of the Franconian Lineament (6900 to 7140 m), which appears as a brittle ductile shear zone and prominent seismic reflector, were modelled to simulate the hydraulic situation at the two boreholes of the Continental Deep Drilling Program (KTB). They led to estimations of the hydraulic permeability in crystalline rock. The geometrical parameters of the fractures, such as fracture locations and orientations, were determined from structural borehole measurements, which create an image of the borehole wall. The selection of potentially open fractures was decided according to the stress field. Only fractures with the dip direction (azimuth) of the fracture plane perpendicular to the maximum horizontal stress field were assumed to be open. The motivation for this assumption is the fact that the maximum horizontal stress is higher than the vertical stress from the formation, indicating that the state of stress is a strike-slip faulting. Therefore, the probability of open fractures due to this particular stress field at the KTB sites is enhanced. Length scales for fracture apertures and extensions were stochastically varied and calibrated by hydraulic experiments. The mean fracture aperture was estimated to be 25 ,m, assuming an exponential distribution, with corresponding permeability in the range of 10,16 m2. Similar results were also obtained for log-normal and normal distributions, with a variation of permeability of the order of a factor of 2. The influence of the fracture length on permeability of the stochastic networks was also studied. Decreasing the fracture length beyond a specific threshold of 10 m led to networks with vanishing connectivity and hence vanishing permeability. Therefore, we assume a mean fracture length exceeding the threshold of 10 m as a necessary assumption for a macroscopic hydraulically active fracture system at the KTB site. The calculated porosity due to the fracture network is of the order of 10,3 per cent, which at first sight contradicts the estimated matrix porosity of 1 to 2 per cent from borehole measurements and core measurements. It can be concluded from these results, however, that if the fluid transport is due to a macroscopic fracture system, only very low porosity is needed for hydraulic flow with permeabilities up to several 10,16 m2, and hence the contribution of matrix porosity to the hydraulic transport is of a subordinate nature. [source]


Influence of Small-Scale Heterogeneities on Contaminant Transport in Fractured Crystalline Rock

GROUND WATER, Issue 5 2006
Ralph Mettier
We present a sequence of purely advective transport models that demonstrate the influence of small-scale geometric inhomogeneities on contaminant transport in fractured crystalline rock. Special weight is placed on the role of statistically generated variable fracture apertures. The fracture network geometry and the aperture distribution are based on information from an in situ radionuclide retardation experiment performed at Grimsel test site (Swiss Alps). The obtained breakthrough curves are fitted with the advection dispersion equation and continuous-time random walks (CTRW). CTRW is found to provide superior fits to the late-arrival tailing and is also found to show a good correlation with the velocity distributions obtained from the hydraulic models. The impact of small-scale heterogeneities, both in fracture geometry and aperture, on transport is shown to be considerable. [source]


Ground Water/Surface Water Interaction in a Fractured Rock Aquifer

GROUND WATER, Issue 5 2003
Jaime P.A. Oxtobee
In a recent field study of ground water/surface water interaction between a bedrock stream and an underlying fractured rock aquifer, it was determined that the majority of ground water discharge occurred through sparsely located vertical fractures. In this paper, the dominant mechanisms governing ground water/surface water exchange in such an environment are investigated using a numerical model. The study was conducted using several conceptual models based on the field study results. Although the field results provided the motivation for the modeling study, it was not intended to match modeling and field results directly. In addition, the extent of capture zones for discharging or recharging fractures was explored. The results of this study are intended to provide a better understanding of contaminant migration in the vicinity of bedrock streams. Based on the numerical results, the rate of ground water discharge (or recharge) was found to depend on the aperture size of the discharging feature, and on the distribution of hydraulic head with depth within the fracture network. It was determined that the extent of both the capture zone and reverse capture zone for an individual fracture can be extremely large, and will be determined by the height of the stream stage, the fracture apertures of the network, and the hydraulic-head distribution within the network. Because both the stream stage and the hydraulic-head distribution are transient, the size of the capture zone and/or the reverse capture zone for an individual fracture may change significantly over time. As a result, the migration path for contaminants within the fracture network and between the surface and subsurface will also vary significantly with time. [source]