Home About us Contact | |||
Fractional Steps (fractional + step)
Terms modified by Fractional Steps Selected AbstractsA 3-D non-hydrostatic pressure model for small amplitude free surface flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2006J. W. Lee Abstract A three-dimensional, non-hydrostatic pressure, numerical model with k,, equations for small amplitude free surface flows is presented. By decomposing the pressure into hydrostatic and non-hydrostatic parts, the numerical model uses an integrated time step with two fractional steps. In the first fractional step the momentum equations are solved without the non-hydrostatic pressure term, using Newton's method in conjunction with the generalized minimal residual (GMRES) method so that most terms can be solved implicitly. This method only needs the product of a Jacobian matrix and a vector rather than the Jacobian matrix itself, limiting the amount of storage and significantly decreasing the overall computational time required. In the second step the pressure,Poisson equation is solved iteratively with a preconditioned linear GMRES method. It is shown that preconditioning reduces the central processing unit (CPU) time dramatically. In order to prevent pressure oscillations which may arise in collocated grid arrangements, transformed velocities are defined at cell faces by interpolating velocities at grid nodes. After the new pressure field is obtained, the intermediate velocities, which are calculated from the previous fractional step, are updated. The newly developed model is verified against analytical solutions, published results, and experimental data, with excellent agreement. Copyright © 2005 John Wiley & Sons, Ltd. [source] Block factorized preconditioners for high-order accurate in time approximation of the Navier-Stokes equationsNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 4 2003Alessandro Veneziani Computationally efficient solution methods for the unsteady Navier-Stokes incompressible equations are mandatory in real applications of fluid dynamics. A typical strategy to reduce the computational cost is to split the original problem into subproblems involving the separate computation of velocity and pressure. The splitting can be carried out either at a differential level, like in the Chorin-Temam scheme, or in an algebraic fashion, like in the algebraic reinterpretation of the Chorin-Temam method, or in the Yosida scheme (see 1 and 19). These fractional step schemes indeed provide effective methods of solution when dealing with first order accurate time discretizations. Their extension to high order time discretization schemes is not trivial. To this end, in the present work we focus our attention on the adoption of inexact algebraic factorizations as preconditioners of the original problem. We investigate their properties and show that some particular choices of the approximate factorization lead to very effective schemes. In particular, we prove that performing a small number of preconditioned iterations is enough to obtain a time accurate solution, irrespective of the dimension of the system at hand. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 487,510, 2003 [source] An accurate integral-based scheme for advection,diffusion equationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2001Tung-Lin Tsai Abstract This paper proposes an accurate integral-based scheme for solving the advection,diffusion equation. In the proposed scheme the advection,diffusion equation is integrated over a computational element using the quadratic polynomial interpolation function. Then elements are connected by the continuity of first derivative at boundary points of adjacent elements. The proposed scheme is unconditionally stable and results in a tridiagonal system of equations which can be solved efficiently by the Thomas algorithm. Using the method of fractional steps, the proposed scheme can be extended straightforwardly from one-dimensional to multi-dimensional problems without much difficulty and complication. To investigate the computational performances of the proposed scheme five numerical examples are considered: (i) dispersion of Gaussian concentration distribution in one-dimensional uniform flow; (ii) one-dimensional viscous Burgers equation; (iii) pure advection of Gaussian concentration distribution in two-dimensional uniform flow; (iv) pure advection of Gaussian concentration distribution in two-dimensional rigid-body rotating flow; and (v) three-dimensional diffusion in a shear flow. In comparison not only with the QUICKEST scheme, the fully time-centred implicit QUICK scheme and the fully time-centred implicit TCSD scheme for one-dimensional problem but also with the ADI-QUICK scheme, the ADI-TCSD scheme and the MOSQUITO scheme for two-dimensional problems, the proposed scheme shows convincing computational performances. Copyright © 2001 John Wiley & Sons, Ltd. [source] A 3-D non-hydrostatic pressure model for small amplitude free surface flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2006J. W. Lee Abstract A three-dimensional, non-hydrostatic pressure, numerical model with k,, equations for small amplitude free surface flows is presented. By decomposing the pressure into hydrostatic and non-hydrostatic parts, the numerical model uses an integrated time step with two fractional steps. In the first fractional step the momentum equations are solved without the non-hydrostatic pressure term, using Newton's method in conjunction with the generalized minimal residual (GMRES) method so that most terms can be solved implicitly. This method only needs the product of a Jacobian matrix and a vector rather than the Jacobian matrix itself, limiting the amount of storage and significantly decreasing the overall computational time required. In the second step the pressure,Poisson equation is solved iteratively with a preconditioned linear GMRES method. It is shown that preconditioning reduces the central processing unit (CPU) time dramatically. In order to prevent pressure oscillations which may arise in collocated grid arrangements, transformed velocities are defined at cell faces by interpolating velocities at grid nodes. After the new pressure field is obtained, the intermediate velocities, which are calculated from the previous fractional step, are updated. The newly developed model is verified against analytical solutions, published results, and experimental data, with excellent agreement. Copyright © 2005 John Wiley & Sons, Ltd. [source] A three-dimensional vortex particle-in-cell method for vortex motions in the vicinity of a wallINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2001Chung Ho Liu Abstract A new vortex particle-in-cell method for the simulation of three-dimensional unsteady incompressible viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the velocity of each particle is interpolated from an Eulerian mesh solution of velocity,Poisson equations. The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are related by the Neumann conditions. The basic framework for implementation of the procedure is also introduced where the solution update comprises a sequence of two fractional steps. The method is applied to a problem where an unsteady boundary layer develops under the impact of a vortex ring and comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley & Sons, Ltd. [source] |