Fractional Anisotropy (fractional + anisotropy)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


White matter changes in extremely preterm infants, a population-based diffusion tensor imaging study

ACTA PAEDIATRICA, Issue 6 2010
Béatrice Skiöld
Abstract Aim:, To investigate cerebral white matter (WM) abnormalities (J Pediatr 2003; 143: 171) and diffuse and excessive high signal intensities (DEHSI), (J Pediatr 1999; 135: 351) in a cohort of extremely preterm infants born in Stockholm during a 3-year period, using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Methods:, MRI at term-equivalent age was performed in 109 infants and DTI data were acquired in 54 infants. Survival rate in the entire cohort was 67%. Sixteen term-born healthy control infants were scanned for comparison. Results:, No or mild WM abnormalities were seen in 86% of infants and 14% had moderate or severe WM abnormalities. DEHSI were seen in infants with all grades of white matter abnormalities and were present in 56% of infants. In the WM at the level of centrum semiovale, infants with any WM abnormalities or DEHSI had lower Fractional Anisotropy and higher Apparent Diffusion Coefficient compared with control infants. No significant differences in diffusion were seen in infants without DEHSI compared with the controls in this region. Compared with controls, the preterm infants had significantly altered diffusion in the corpus callosum. Conclusion:, Only 14% of the extremely preterm infants had moderate or severe WM abnormalities on MRI. However, the incidence of DEHSI was high. In the DEHSI regions, changes in diffusion parameters were detected, indicating altered WM organization. [source]


Smoothing that does not blur: Effects of the anisotropic approach for evaluating diffusion tensor imaging data in the clinic

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2010
Marta Moraschi MS
Abstract Purpose: To compare the effects of anisotropic and Gaussian smoothing on the outcomes of diffusion tensor imaging (DTI) voxel-based (VB) analyses in the clinic, in terms of signal-to-noise ratio (SNR) enhancement and directional information and boundary structures preservation. Materials and Methods: DTI data of 30 Alzheimer's disease (AD) patients and 30 matched control subjects were obtained at 3T. Fractional anisotropy (FA) maps with variable degrees and quality (Gaussian and anisotropic) of smoothing were created and compared with an unsmoothed dataset. The two smoothing approaches were evaluated in terms of SNR improvements, capability to separate differential effects between patients and controls by a standard VB analysis, and level of artifacts introduced by the preprocessing. Results: Gaussian smoothing regionally biased the FA values and introduced a high variability of results in clinical analysis, greatly dependent on the kernel size. On the contrary, anisotropic smoothing proved itself capable of enhancing the SNR of images and maintaining boundary structures, with only moderate dependence of results on smoothing parameters. Conclusion: Our study suggests that anisotropic smoothing is more suitable in DTI studies; however, regardless of technique, a moderate level of smoothing seems to be preferable considering the artifacts introduced by this manipulation. J. Magn. Reson. Imaging 2010;31:690,697. © 2010 Wiley-Liss, Inc. [source]


Diffusion Tensor and Functional Magnetic Resonance Imaging of Diffuse Axonal Injury and Resulting Language Impairment

JOURNAL OF NEUROIMAGING, Issue 4 2007
Hui Mao PhD
ABSTRACT Diffuse axonal injury (DAI) is a common aftermath of brain trauma. The diagnosis of DAI is often difficult using conventional magnetic resonance imaging (MRI). We report a diffusion tensor imaging (DTI) study of a patient who sustained DAI presenting with language impairment. Fractional anisotropy (FA) and DTI tractography revealed a reduction of white matter integrity in the left frontal and medial temporal areas. White matter damage identified by DTI was correlated with the patient's language impairment as assessed by functional MRI (fMRI) and a neuropsychological exam. The findings demonstrate the utility of DTI for identifying white matter changes secondary to traumatic brain injury (TBI). [source]


In vivo analysis of the post-natal development of normal mouse brain by DTI

NMR IN BIOMEDICINE, Issue 4 2007
Pierre Larvaron
Abstract The water diffusion characteristics of wild-type mouse brains have been studied in vivo by DTI to follow developmental changes. Here, axial (,//) and radial (,,) diffusivities and fractional anisotropy were measured from the fifth day of life (P5) and at three other post-natal ages (P12, P19 and P54). Magnetic resonance images were collected from a single sagittal slice in the middle of the two hemispheres; ROI were chosen in nine different structures of both grey and white matter. Fractional anisotropy (FA) from P5 onwards distinguished structures of both white and grey matter, even though myelination had yet to occur. Between P5 and P54, a significant increase in FA was observed in the genu of the corpus callosum due to a significant decrease in ,, whereas ,// remained stable. Many other significant variations of ,// and ,, were measured in different structures. They were substantially correlated with axon and myelin maturation which are responsible for the main evolutions of the brain during its post-natal development. These quantitative data show that in vivo characterization of the anatomy and microstructure of the normal mouse brain during development is possible. The normative data will greatly improve the characterization of abnormal development in the transgenic mouse brain. Copyright © 2006 John Wiley & Sons, Ltd. [source]


White matter abnormalities in children with and at risk for bipolar disorder

BIPOLAR DISORDERS, Issue 8 2007
Jean A Frazier
Objectives:, Diffusion tensor magnetic resonance imaging (DT-MRI) assesses the integrity of white matter (WM) tracts in the brain. Children with bipolar disorder (BPD) may have WM abnormalities that precede illness onset. To more fully examine this possibility, we scanned children with DSM-IV BPD and compared them to healthy peers and children at risk for BPD (AR-BPD), defined as having a first-degree relative with the disorder. Methods:, Ten children with BPD, eight healthy controls (HC), and seven AR-BPD, similar in age, had MRI scans on a 1.5 Tesla GE scanner, including a standard DT-MRI sequence (T2-EPI) with 25 axial slices. Fractional anisotropy (FA) values were compared between groups to determine regions of significant difference (p < 0.05). Results:, Compared to HC, children with BPD had decreased FA in right and left superior frontal tracts, including the superior longitudinal fasciculus I (SLF I) and the cingulate-paracingulate WM (CG-PACWM). In addition, the BPD group had reduced FA in left orbital frontal WM and the right corpus callosum body. Compared to AR-BPD, children with BPD showed reduced FA in the right and left CG-PACWM. Both the BPD and AR-BPD groups showed reduced FA relative to HC in bilateral SLF I. Conclusions:, The bilateral SLF I finding in both the BPD and AR-BPD groups may represent a trait-based marker or endophenotype of the disorder. The finding of decreased FA in the right and left CG-PACWM in children with BPD compared to the other two groups may represent a disease-state related finding. [source]


Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study

BIPOLAR DISORDERS, Issue 3 2004
Caleb M Adler
Objectives:, Prefrontal white matter has been hypothesized to be integral to the pathophysiology of bipolar disorder. Recent morphometric studies however, have not observed changes in white matter in bipolar patients. We hypothesized that changes in prefrontal function in bipolar disorder, widely reported in the literature, may be related to a loss of white matter tract integrity with a resultant dysconnectivity syndrome. In this study we utilized diffusion tensor imaging (DTI) to examine prefrontal white matter in patients with bipolar disorder. Methods:, Nine patients with bipolar disorder and nine healthy controls were recruited. DTI and localizing anatomic data were acquired, and regions of interest (ROIs) identified in the prefrontal white matter at 15, 20, 25, and 30 mm superior to the anterior commissure (AC). Fractional anisotropy (FA) and trace apparent diffusion coefficient (TADC) were compared by ROI between study groups. Results:, The FA of ROIs 25 and 30 mm above the AC was significantly reduced in patients with bipolar disorder; FA of all ROIs showed high-medium to large effect sizes. No significant group differences were identified in TADC. Conclusions:, Our findings suggest that a loss of bundle coherence is present in prefrontal white matter. This loss of coherence may contribute to prefrontal cortical pathology in patients with bipolar disorder. [source]


Diaschisis after thalamic stroke: a comparison of metabolic and structural changes in a patient with amnesic syndrome

ACTA NEUROLOGICA SCANDINAVICA, Issue 2007
V. Stenset
Introduction,, We present a patient with a left anteromedial thalamic lesion with an amnesic syndrome. The patient underwent neuropsychological testing, cerebrospinal fluid (CSF) analyses, magnetic resonance imaging (MRI) [T2, flair, and diffusion tensor imaging (DTI)] and [18F]-2-fluoro-deoxy- d -glucose positron emission tomography (FDG-PET) to assess indirect effects of thalamic lesions on cortical function. Case report,, A 67-year-old right-handed woman was admitted to a university-based memory unit because of memory and concentration problems. Neuropsychological testing revealed dysfunction of episodic memory, semantic memory and working memory. General intellectual function and attention capacity were preserved. MRI revealed an anteromedial thalamic lesion in the left hemisphere. FDG-PET showed decreased uptake in the frontal, parietal and temporal lobes of the left hemisphere. Regions of interest (ROI) in white matter were selected and left and right hemispheres were compared. Fractional anisotropy (FA) in ROI representing thalamo-cortical connections were decreased in the left hemisphere when compared with the right. Conclusion,, The results show the importance of a network that include the anterior and dorsomedian nuclei, which influence the activity in areas of the cortex responsible for memory processes. The imaging findings suggest that areas of cortical diaschisis after thalamic infarction correspond to areas affected by thalamo-cortical fibre loss as measured with FA. [source]


Analysis of b -value calculations in diffusion weighted and diffusion tensor imaging

CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2005
Daniel Güllmar
Abstract Diffusion weighted imaging has opened new diagnostic possibilities by using microscopic diffusion of water molecules as a means of image contrast. The directional dependence of diffusion has led to the development of diffusion tensor imaging, which allows us to characterize microscopic tissue geometry. The link between the measured NMR signal and the self-diffusion tensor is established by the so-called b matrices that depend on the gradient's direction, strength, and timing. However, in the calculation of b -matrix elements, the influence of imaging gradients on each element of the b matrix is often neglected. This may cause errors, which in turn leads to an incorrect extraction of diffusion coefficients. In cases where the imaging gradients are high (high spatial resolution), these errors may be substantial. Using a generic pulsed gradient spin-echo (PGSE) imaging sequence, the effects of neglecting the imaging gradients on the b -matrix calculation are demonstrated. By measuring an isotropic phantom with this sequence it can be analytically as well as experimentally shown that large deviations in single b -matrix elements are generated. These deviations are obtained by applying the diffusion weighting in the readout direction of the imaging dimension in combination with relatively large imaging gradients. The systematic errors can be avoided by a full b -matrix calculation considering all the gradients of the sequence or by generating cross-term free signals using the geometric average of two diffusion weighted images with opposite polarity. The importance of calculating the exact b matrices by the proposed methods is based on the fact that more precise diffusion parameters are obtained for extracting correct property maps, such as fractional anisotropy, volume ratio, or conductivity tensor maps. © 2005 Wiley Periodicals, Inc. Concepts Magn Reson Part A 25A: 53,66, 2005 [source]


Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography

EPILEPSIA, Issue 8 2008
Sebastian Rodrigo
Summary Purpose: Language functional magnetic resonance imaging (fMRI) is used to noninvasively assess hemispheric language specialization as part of the presurgical work-up in temporal lobe epilepsy (TLE). White matter asymmetries on diffusion tensor imaging (DTI) may be related to language specialization as shown in controls and TLE. To refine our understanding of the effect of epilepsy on the structure,function relationships, we focused on the arcuate fasciculus (ArcF) and the inferior occipitofrontal fasciculus (IOF) and tested the relationship between DTI- and fMRI-based lateralization indices in TLE. Methods: fMRI with three language tasks and DTI were obtained in 20 patients (12 right and 8 left TLE). The ArcF, a major language-related tract, and the IOF were segmented bilaterally using probabilistic tractography to obtain fractional anisotropy (FA) lateralization indices. These were correlated with fMRI-based lateralization indices computed in the inferior frontal gyrus (Pearson's correlation coefficient). Results: fMRI indices were left-lateralized in 16 patients and bilateral or right-lateralized in four. In the ArcF, FA was higher on the left than on the right side, reaching significance in right but not in left TLE. We found a positive correlation between ArcF anisotropy and fMRI-based lateralization indices in right TLE (p < 0.009), but not in left TLE patients. No correlation was observed for the IOF. Conclusions: Right TLE patients with more left-lateralized functional activations also showed a leftward-lateralized arcuate fasciculus. The decoupling between the functional and structural indices of the ArcF underlines the complexity of the language network in left TLE patients. [source]


Diffusion-tensor MR imaging for evaluation of the efficacy of hyperbaric oxygen therapy in patients with delayed neuropsychiatric syndrome caused by carbon monoxide inhalation

EUROPEAN JOURNAL OF NEUROLOGY, Issue 7 2007
C.-P. Lo
The purpose of this study is to assess the efficacy of hyperbaric oxygen therapy (HBOT) in patients with delayed neuropsychiatric syndrome (DNS) caused by carbon monoxide (CO) inhalation using diffusion tensor magnetic resonance (MR) imaging and neuropsychological test. Conventional and diffusion tensor brain MR imaging exams were performed in six patients with DNS immediately before and 3 months after the HBOT to obtain fractional anisotropy (FA) values. Six age- and sex-matched normal control subjects also received MR exams for comparison. Mini-Mental State Examination (MMSE) was also performed in patients immediately before and 3 months after the HBOT. A significantly higher mean FA value was found in control subjects as compared with the patients both before and 3 months after the HBOT (P < 0.001). The mean FA value 3 months after the HBOT was also significantly higher than that before the HBOT in the patient group (P < 0.001). All of the patients regained full scores in the MMSE 3 months after the HBOT. Diffusion tensor MR imaging can be a quantitative method for the assessment of the white matter change and monitor the treatment response in patients of CO-induced DNS with a good clinical correlation. HBO may be an effective therapy for DNS. [source]


The neuroanatomy of grapheme,color synesthesia

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009
Lutz Jäncke
Abstract Grapheme,color synesthetes perceive particular colors when seeing a letter, word or number (grapheme). Functional neuroimaging studies have provided some evidence in favor of a neural basis for this type of synesthesia. Most of these studies have reported extra activations in the fusiform gyrus, which is known to be involved in color, letter and word processing. The present study examined different neuroanatomical features (i.e. cortical thickness, cortical volume and cortical surface area) in a sample of 48 subjects (24 grapheme,color synesthetes and 24 control subjects), and revealed increased cortical thickness, volume and surface area in the right and left fusiform gyrus and in adjacent regions, such as the lingual gyrus and the calcarine cortex, in grapheme,color synesthetes. In addition, we set out to analyze structural connectivity based on fractional anisotropy (FA) measurements in a subsample of 28 subjects (14 synesthetes and 14 control subjects). In contrast to the findings of a recent neuroanatomical study using modern diffusion tensor imaging measurement techniques, we did not detect any statistically significant difference in FA between synesthetes and non-synesthetes in the fusiform gyri. Our study thus supports the hypothesis of local anatomical differences in cortical characteristics in the vicinity of the V4 complex. The observed altered brain anatomy in grapheme,color synesthetes might be the anatomical basis for this particular form of synesthesia but it is also possible that the detected effects are a consequence (rather than the primary cause) of the life-long experience of grapheme,color synesthesia. [source]


Intellectual abilities and white matter microstructure in development: A diffusion tensor imaging study

HUMAN BRAIN MAPPING, Issue 10 2010
Christian K. Tamnes
Abstract Higher-order cognitive functions are supported by distributed networks of multiple interconnected cortical and subcortical regions. Efficient cognitive processing depends on fast communication between these regions, so the integrity of the connections between them is of great importance. It is known that white matter (WM) development is a slow process, continuing into adulthood. While the significance of cortical maturation for intellectual development is described, less is known about the relationships between cognitive functions and maturation of WM connectivity. In this cross-sectional study, we investigated the associations between intellectual abilities and development of diffusion tensor imaging (DTI) derived measures of WM microstructure in 168 right-handed participants aged 8,30 years. Independently of age and sex, both verbal and performance abilities were positively related to fractional anisotropy (FA) and negatively related to mean diffusivity (MD) and radial diffusivity (RD), predominantly in the left hemisphere. Further, verbal, but not performance abilities, were associated with developmental differences in DTI indices in widespread regions in both hemispheres. Regional analyses showed relations with both FA and RD bilaterally in the anterior thalamic radiation and the cortico-spinal tract and in the right superior longitudinal fasciculus. In these regions, our results suggest that participants with high verbal abilities may show accelerated WM development in late childhood and a subsequent earlier developmental plateau, in contrast to a steadier and prolonged development in participants with average verbal abilities. Longitudinal data are needed to validate these interpretations. The results provide insight into the neurobiological underpinnings of intellectual development. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia

HUMAN BRAIN MAPPING, Issue 12 2009
Bumseok Jeong
Abstract Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients

HUMAN BRAIN MAPPING, Issue 11 2009
Judith D. Schaechter
Abstract Greater loss in structural integrity of the ipsilesional corticospinal tract (CST) is associated with poorer motor outcome in patients with hemiparetic stroke. Animal models of stroke have demonstrated that structural remodeling of white matter in the ipsilesional and contralesional hemispheres is associated with improved motor recovery. Accordingly, motor recovery in patients with stroke may relate to the relative strength of CST degeneration and remodeling. This study examined the relationship between microstructural status of brain white matter tracts, indexed by the fractional anisotropy (FA) metric derived from diffusion tensor imaging (DTI) data, and motor skill of the stroke-affected hand in patients with chronic stroke. Voxelwise analysis revealed that motor skill significantly and positively correlated with FA of the ipsilesional and contralesional CST in the patients. Additional voxelwise analyses showed that patients with poorer motor skill had reduced FA of bilateral CST compared to normal control subjects, whereas patients with better motor skill had elevated FA of bilateral CST compared to controls. These findings were confirmed using a DTI-tractography method applied to the CST in both hemispheres. The results of this study suggest that the level of motor skill recovery achieved in patients with hemiparetic stroke relates to microstructural status of the CST in both the ipsilesional and contralesional hemispheres, which may reflect the net effect of degeneration and remodeling of bilateral CST. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: An in vivo study with TBSS and VBM

HUMAN BRAIN MAPPING, Issue 9 2009
Benedetta Bodini
Abstract We investigated the relationship between the damage occurring in the brain normal-appearing white matter (NAWM) and in the gray matter (GM) in patients with early Primary Progressive multiple sclerosis (PPMS), using Tract-Based Spatial Statistics (TBSS) and an optimized voxel-based morphometry (VBM) approach. Thirty-five patients with early PPMS underwent diffusion tensor and conventional imaging and were clinically assessed. TBSS and VBM were employed to localize regions of lower fractional anisotropy (FA) and lower GM volume in patients compared with controls. Areas of anatomical and quantitative correlation between NAWM and GM damage were detected. Multiple regression analyses were performed to investigate whether NAWM FA or GM volume of regions correlated with clinical scores independently from the other and from age and gender. In patients, we found 11 brain regions that showed an anatomical correspondence between reduced NAWM FA and GM atrophy; of these, four showed a quantitative correlation (i.e., the right sensory motor region with the adjacent corticospinal tract, the left and right thalamus with the corresponding thalamic radiations and the left insula with the adjacent WM). Either the NAWM FA or the GM volume in each of these regions correlated with disability. These results demonstrate a link between the pathological processes occurring in the NAWM and in the GM in PPMS in specific, clinically relevant brain areas. Longitudinal studies will determine whether the GM atrophy precedes or follows the NAWM damage. The methodology that we described may be useful to investigate other neurological disorders affecting both the WM and the GM. Hum Brain Mapp 2009. © 2009 Wiley-Liss, Inc. [source]


Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity

HUMAN BRAIN MAPPING, Issue 7 2008
Mark J. Lowe
Abstract Recent studies indicate that functional connectivity using low-frequency BOLD fluctuations (LFBFs) is reduced between the bilateral primary sensorimotor regions in multiple sclerosis. In addition, it has been shown that pathway-dependent measures of the transverse diffusivity of water in white matter correlate with related clinical measures of functional deficit in multiple sclerosis. Taken together, these methods suggest that MRI methods can be used to probe both functional connectivity and anatomic connectivity in subjects with known white matter impairment. We report the results of a study comparing anatomic connectivity of the transcallosal motor pathway, as measured with diffusion tensor imaging (DTI) and functional connectivity of the bilateral primary sensorimotor cortices (SMC), as measured with LFBFs in the resting state. High angular resolution diffusion imaging was combined with functional MRI to define the transcallosal white matter pathway connecting the bilateral primary SMC. Maps were generated from the probabilistic tracking employed and these maps were used to calculate the mean pathway diffusion measures fractional anisotropy ,FA,, mean diffusivity ,MD,, longitudinal diffusivity ,,1,, and transverse diffusivity ,,2,. These were compared with LFBF-based functional connectivity measures (Fc) obtained at rest in a cohort of 11 multiple sclerosis patients and ,10 age- and gender-matched control subjects. The correlation between ,FA, and Fc for MS patients was r = ,0.63, P < 0.04. The correlation between all subjects ,,2, and Fc was r = 0.42, P < 0.05. The correlation between all subjects ,,2, and Fc was r = ,0.50, P < 0.02. None of the control subject correlations were significant, nor were ,FA,, ,,1,, or ,MD, significantly correlated with Fc for MS patients. This constitutes the first in vivo observation of a correlation between measures of anatomic connectivity and functional connectivity using spontaneous LFBFs. Hum Brain Mapp, 2008. © 2008 Wiley-Liss, Inc. [source]


Deviation of Fiber Tracts in the Vicinity of Brain Lesions: Evaluation by Diffusion Tensor Imaging

ISRAEL JOURNAL OF CHEMISTRY, Issue 1-2 2003
Yaniv Assaf
Diffusion Tensor Imaging (DTI) is used to characterize the diffusion properties of deviated white matter caused by brain tumors. DTI was recently shown to be very helpful in delineating white matter both within brain lesions and surrounding them. Displacement of white matter fibers may be one of the consequences of tumor growth adjacent to white matter. The combination of white matter mapping with DTI and gray matter mapping using functional MRI, in some cases, facilitated assessment of the relation between the shifted cortical areas and the corresponding white matter tracts. We found that the fractional anisotropy extracted from DTI is increased by 38% in areas of non-edematous shifted white matter fibers. By contrast, trace apparent diffusion coefficient (ADC) values in those areas were found to be similar to contralateral side and normal control values. Analysis of the three diffusion tensor eigenvalues revealed that the increase in the fractional anisotropy is a result of two processes. The first is the increase in the diffusion parallel to the fibers,,1 (by 18%), and the second is the decrease in the diffusion perpendicular to fibers,,3 (by 34%) as compared with the contralateral side. These opposing changes cause an increase in the diffusion anisotropy but no change in the trace ADC. It is suggested that the pressure caused by the tumor may lead to an increase in white matter fiber tension, thus causing an increase in ,1. On the other hand, the same pressure causes increased fiber density per unit area, leading to a higher degree of restricted diffusion in the extracellular space and, hence, a reduction in ,3. [source]


Ground truth hardware phantoms for validation of diffusion-weighted MRI applications

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2010
Pim Pullens MSc
Abstract Purpose: To quantitatively validate diffusion-weighted MRI (DW-MRI) applications, a hardware phantom containing crossing fibers at a sub-voxel level is presented. It is suitable for validation of a large spectrum of DW-MRI applications from acquisition to fiber tracking, which is an important recurrent issue in the field. Materials and Methods: Phantom properties were optimized to resemble properties of human white matter in terms of anisotropy, fractional anisotropy, and T2. Sub-voxel crossings were constructed at angles of 30, 50, and 65 degrees, by wrapping polyester fibers, with a diameter close to axon diameter, into heat shrink tubes. We show our phantoms are suitable for the acquisition of DW-MRI data using a clinical protocol. Results: The phantoms can be used to succesfully estimate both the diffusion tensor and non-Gaussian diffusion models, and perform streamline fiber tracking. DOT (Diffusion Orientation Transform) and q-ball reconstruction of the diffusion profiles acquired at b = 3000 s/mm2 and 132 diffusion directions reveal multimodal diffusion profiles in voxels containing crossing yarn strands. Conclusion: The highly purpose adaptable phantoms provide a DW-MRI validation platform: applications include optimisation of acquisition schemes, validation of non-Gaussian diffusion models, comparison and validation of fiber tracking algorithms, and quality control in multi-center DWI studies. J. Magn. Reson. Imaging 2010;32:482,488. © 2010 Wiley-Liss, Inc. [source]


Stimulated echo induced misestimates on diffusion tensor indices and its remedy

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 6 2010
Tzu-Chao Chuang PhD
Abstract Purpose: To report possible erroneous estimates of diffusion parameters in the twice-refocused spin-echo (TRSE) technique, proposed to eliminate eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging, when stimulated echo signals are inappropriately included. Materials and Methods: Eleven subjects were included for imaging experiments on two 1.5 Tesla systems using the TRSE sequence. Three versions, two with unbalanced crusher gradients inserted to dephase the stimulated echo from the b = 0 images and one with balanced crusher gradients, were implemented. The apparent diffusion coefficients (ADC) and fractional anisotropy (FA) were derived and compared. Results: The ADCs obtained with unbalanced crusher gradients were closer to values reported in the literature. Stimulated echo led to ADC over-estimations by 34.2%, 50.4%, 54.0%, 51.5%, 24.0%, and 41.9% in the genu of corpus callosum, splenium of corpus callosum, bilateral corona radiata, internal capsule, mediofrontal gyrus, and the cuneus, respectively (P < 0.01), with concomitant reduction in FA in highly anisotropic regions. Over-estimations of diffusion coefficients were found to be roughly equal along all directions. Conclusion: Formation of stimulated echo in the TRSE technique can lead to erroneous estimations of the diffusion parameters, even if no prominent morphological artifacts are seen. J. Magn. Reson. Imaging 2010;31:1522,1529. © 2010 Wiley-Liss, Inc. [source]


Toward a practical protocol for human optic nerve DTI with EPI geometric distortion correction

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2009
Udomchai Techavipoo PhD
Abstract Purpose To develop a practical protocol for diffusion tensor imaging (DTI) of the human optic nerve with echo planar imaging (EPI) geometric distortion correction. Materials and Methods A conventional DTI protocol was modified to acquire images with fat and cerebrospinal fluid (CSF) suppression and field inhomogeneity maps of contiguous coronal slices covering the whole brain. The technique was applied to healthy volunteers and multiple sclerosis patients with and without a history of unilateral optic neuritis. DTI measures and optic nerve tractography before and after geometric distortion correction were compared. Diffusion measures from left and right or from affected and unaffected eyes in different subject cohorts were reported. Results The image geometry after correction closely resembled reference anatomical images. Optic nerve tractography became feasible after distortion correction. The diffusion measures from the healthy volunteers were in good agreement with the literature. Statistically significant differences were found in the fractional anisotropy and orthogonal eigenvalues between affected and unaffected eyes in optic neuritis patients with poor recovery. The diffusion measures before and after geometric distortion correction were not significantly different. For cohorts without optic neuritis, the difference between diffusion measures from left and right eyes was not statistically significant. Conclusion The proposed technique could provide a practical DTI protocol to study the human optic nerve. J. Magn. Reson. Imaging 2009;30:699,707. © 2009 Wiley-Liss, Inc. [source]


MRI of late microstructural and metabolic alterations in radiation-induced brain injuries

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2009
Kevin C. Chan BEng
Abstract Purpose To evaluate the late effects of radiation-induced damages in the rat brain by means of in vivo multiparametric MRI. Materials and Methods The right hemibrains of seven Sprague-Dawley rats were irradiated with a highly collimated 6 MV photon beam at a single dose of approximately 28 Gy. Diffusion tensor imaging (DTI), proton MR spectroscopy (1H-MRS), T2-weighted imaging, and T1-weighted imaging were performed to the same animals 12 months after radiation treatment. Results Compared with the contralateral side, a significantly higher percentage decrease in fractional anisotropy was observed in the ipsilateral fimbria of hippocampus (29%) than the external capsule (8%) in DTI, indicating the selective vulnerability of fimbria to radiation treatment. Furthermore, in 1H-MRS, significantly higher choline, glutamate, lactate, and taurine peaks by 24%, 25%, 87%, and 58%, respectively, were observed relative to creatine in the ipsilateral brain. Postmortem histology confirmed these white matter degradations as well as glial fibrillary acidic protein and glutamine synthetase immunoreactivity increase in the ipsilateral brain. Conclusion The microstructural and metabolic changes in late radiation-induced brain injuries were documented in vivo. These multiparametric MRI measurements may help understand the white matter changes and neurotoxicity upon radiation treatment in a single setting. J. Magn. Reson. Imaging 2009;29:1013,1020. © 2009 Wiley-Liss, Inc. [source]


3D diffusion tensor MRI with isotropic resolution using a steady-state radial acquisition

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2009
Youngkyoo Jung PhD
Abstract Purpose To obtain diffusion tensor images (DTI) over a large image volume rapidly with 3D isotropic spatial resolution, minimal spatial distortions, and reduced motion artifacts, a diffusion-weighted steady-state 3D projection (SS 3DPR) pulse sequence was developed. Materials and Methods A diffusion gradient was inserted in a SS 3DPR pulse sequence. The acquisition was synchronized to the cardiac cycle, linear phase errors were corrected along the readout direction, and each projection was weighted by measures of consistency with other data. A new iterative parallel imaging reconstruction method was also implemented for removing off-resonance and undersampling artifacts simultaneously. Results The contrast and appearance of both the fractional anisotropy and eigenvector color maps were substantially improved after all correction techniques were applied. True 3D DTI datasets were obtained in vivo over the whole brain (240 mm field of view in all directions) with 1.87 mm isotropic spatial resolution, six diffusion encoding directions in under 19 minutes. Conclusion A true 3D DTI pulse sequence with high isotropic spatial resolution was developed for whole brain imaging in under 20 minutes. To minimize the effects of brain motion, a cardiac synchronized, multiecho, DW-SSFP pulse sequence was implemented. Motion artifacts were further reduced by a combination of linear phase correction, corrupt projection detection and rejection, sampling density reweighting, and parallel imaging reconstruction. The combination of these methods greatly improved the quality of 3D DTI in the brain. J. Magn. Reson. Imaging 2009;29:1175,1184. © 2009 Wiley-Liss, Inc. [source]


Diffusion Tensor Tractography-based Analysis of the Pyramidal Tract in Patients with Amyotrophic Lateral Sclerosis

JOURNAL OF NEUROIMAGING, Issue 3 2008
Yoon-Ho Hong MD
ABSTRACT BACKGROUND AND PURPOSE We attempted to measure DTI parameters of the brainstem pyramidal tract using two approaches, ie, simple ROI and tract-specific analyses. Results obtained for healthy subjects and ALS patients were compared. METHODS DTI was performed using a single shot SE-EPI with 25 noncollinear diffusion gradient directions (b= 1000 second/mm2) and with no diffusion gradient on a 3.0-T MR system in 10 ALS patients and in 8 age- and sex-matched normal controls. To delineate the brainstem pyramidal tract, tractography was performed using two ROIs, ie, a seed ROI at the cerebral peduncle (ROI-1) and a target ROI at the lower pons (ROI-2). ROI-1 was subsequently restricted to voxels that contained streamlines in the tract reconstruction, thus creating a sub-ROI. RESULTS Mean fractional anisotropy (FA) and mean diffusivity values were highly reproducible by tract specific analysis, whereas simple ROI analysis yielded larger variabilities between operators. FA values were significantly lower in ALS patients than in normal controls in the tractography-derived sub-ROI (P= .01), but not in the seed or target ROIs. CONCLUSIONS These results suggest, compared with simple ROI analysis, that tract-specific analysis using DTI fiber-tracking is more reliable and sensitive for detecting upper motor neuron pathology in ALS. [source]


Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008
Saurabh Guleria
Abstract Diffusion tensor imaging (DTI) has the potential to reveal disruption of white matter microstructure in chronically injured spinal cords. We quantified fractional anisotropy (FA) and mean diffusivity (MD) to demonstrate retrograde Wallerian degeneration (WD) of cranial corticospinal tract (CST) in cervical spinal cord injury (SCI). Twenty-two patients with complete cervical SCI in the chronic stage were studied with DTI along with 13 healthy controls. Mean FA and MD values were computed for midbrain, pons, medulla, posterior limb of internal capsule, and corona radiata. Significant reduction in the mean FA and increase in MD was observed in the cranial CST in patients with SCI compared with controls, suggesting retrograde WD. Statistically significant inverse FA and MD changes were noted in corona radiata, indicating some restoration of spared white matter tracts. Temporal changes in the DTI metrics suggest progressing degeneration in different regions of CST. These spatiotemporal changes in DTI metrics suggest continued WD in injured fibers along with simultaneous reorganization of spared white matter fibers, which may contribute to changing neurological status in chronic SCI patients. © 2008 Wiley-Liss, Inc. [source]


Delay Discounting Behavior and White Matter Microstructure Abnormalities in Youth With a Family History of Alcoholism

ALCOHOLISM, Issue 9 2010
Megan M. Herting
Background:, Youth with family history of alcohol abuse have a greater risk of developing an alcohol use disorder (AUD). Brain and behavior differences may underlie this increased vulnerability. The current study examined delay discounting behavior and white matter microstructure in youth at high risk for alcohol abuse, as determined by a family history of alcoholism (FH+), and youth without such family history (FH,). Methods:, Thirty-three healthy youth (FH+ = 15, FH, = 18), ages 11 to 15 years, completed a delay discounting task and underwent diffusion tensor imaging. Tract-based spatial statistics (Smith et al., 2006), as well as follow-up region-of-interest analyses, were performed to compare fractional anisotropy (FA) between FH+ and FH, youth. Results:, FH+ youth showed a trend toward increased discounting behavior and had significantly slower reaction times (RTs) on the delay discounting paradigm compared to FH, youth. Group differences in FA were seen in several white matter tracts. Furthermore, lower FA in the left inferior longitudinal fasciculus and the right optic radiation statistically mediated the relationship between FH status and slower RTs on the delay discounting task. Conclusions:, Youth with a family history of substance abuse have disrupted white matter microstructure, which likely contributes to less efficient cortical processing and may act as an intrinsic risk factor contributing to an increased susceptibility of developing AUD. In addition, FHP youth showed a trend toward greater impulsive decision making, possibly representing an inherent personal characteristic that may facilitate substance use onset and abuse in high-risk youth. [source]


Transcallosal White Matter Degradation Detected With Quantitative Fiber Tracking in Alcoholic Men and Women: Selective Relations to Dissociable Functions

ALCOHOLISM, Issue 7 2010
Adolf Pfefferbaum
Introduction:, Excessive alcohol consumption can adversely affect white matter fibers and disrupt transmission of neuronal signals. Here, we examined six anatomically defined transcallosal white matter fiber bundles and asked whether any bundle was specifically vulnerable to alcohol, what aspect of white matter integrity was most affected, whether women were more vulnerable than men, and whether evidence of compromise in specific bundles was associated with deficits in balance, sustained attention, associative learning, and psychomotor function, commonly affected in alcoholics. Methods:, Diffusion tensor imaging quantitative fiber tracking assessed integrity of six transcallosal white matter bundles in 87 alcoholics (59 men, 28 women) and 88 healthy controls (42 men, 46 women). Measures included orientational diffusion coherence (fractional anisotropy, FA) and magnitude of diffusion, quantified separately for axial (longitudinal; ,L) and radial (transverse; ,T) diffusivity. The Digit Symbol Test and a test of ataxia were also administered. Results:, Alcoholism negatively affected callosal FA and ,T of all but the sensory-motor bundle. Women showed no evidence for greater vulnerability to alcohol than men. Multiple regression analyses confirmed a double dissociation: higher diffusivity in sensory-motor and parietal bundles was associated with poorer balance but not psychomotor speed, whereas higher diffusivity in prefrontal and temporal bundles was associated with slower psychomotor speed but not balance. Conclusions:, This study revealed stronger alcohol effects for FA and radial diffusivity than axial diffusivity, suggesting myelin degradation, but no evidence for greater vulnerability to alcohol in women than men. The presence of brain-behavior relationships provides support for the role of alcoholism-related commissural white matter degradation as a substrate of cognitive and motor impairment. Identification of a double dissociation provides further support for the role of selective white matter integrity in specific domains of performance. [source]


Brain Microstructure Is Related to Math Ability in Children With Fetal Alcohol Spectrum Disorder

ALCOHOLISM, Issue 2 2010
Catherine Lebel
Background:, Children with fetal alcohol spectrum disorder (FASD) often demonstrate a variety of cognitive deficits, but mathematical ability seems to be particularly affected by prenatal alcohol exposure. Parietal brain regions have been implicated in both functional and structural studies of mathematical ability in healthy individuals, but little is known about the brain structure underlying mathematical deficits in children with FASD. The goal of this study was to use diffusion tensor imaging (DTI) to investigate the relationship between mathematical skill and brain white matter structure in children with FASD. Methods:, Twenty-one children aged 5 to 13 years diagnosed with FASD underwent DTI on a 1.5-T MRI scanner and cognitive assessments including the Woodcock-Johnson Quantitative Concepts test. Voxel-based analysis was conducted by normalizing subject images to a template and correlating fractional anisotropy (FA) values across the brain white matter with age-standardized math scores. Results:, Voxel-based analysis revealed 4 clusters with significant correlations between FA and math scores: 2 positively-correlated clusters in the left parietal region, 1 positively-correlated cluster in the left cerebellum, and 1 negatively-correlated cluster in the bilateral brainstem. Diffusion tractography identified the specific white matter tracts passing through these clusters, namely the left superior longitudinal fasciculus, left corticospinal tract and body of the corpus callosum, middle cerebellar peduncle, and bilateral projection fibers including the anterior and posterior limbs of the internal capsule. Conclusions:, These results identify 4 key regions related to mathematical ability and provide a link between brain microstructure and cognitive skills in children with FASD. Given previous findings in typically developing children and those with other abnormal conditions, our results highlight the consistent importance of the left parietal area for mathematical tasks across various populations, and also demonstrate other regions that may be specific to mathematical processing in children with FASD. [source]


Microstructural Corpus Callosum Anomalies in Children With Prenatal Alcohol Exposure: An Extension of Previous Diffusion Tensor Imaging Findings

ALCOHOLISM, Issue 10 2009
Jeffrey R. Wozniak
Background:, Several studies have now shown corpus callosum abnormalities using diffusion tensor imaging (DTI) in children with fetal alcohol spectrum disorders (FASD) in comparison with nonexposed controls. The data suggest that posterior regions of the callosum may be disproportionately affected. The current study builds on previous efforts, including our own work, and moves beyond midline corpus callosum to probe major inter-hemispheric white matter pathways with an improved DTI tractographic method. This study also expands on our prior work by evaluating a larger sample and by incorporating children with a broader range of clinical effects including full-criteria fetal alcohol syndrome (FAS). Methods:, Participants included 33 children with FASD (8 FAS, 23 partial FAS, 2 static encephalopathy) and 19 nonexposed controls between the ages of 10 and 17 years. Participants underwent DTI scans and intelligence testing. Groups (FASD vs. controls) were compared on fractional anisotropy (FA) and mean diffusivity (MD) in 6 white matter tracts projected through the corpus callosum. Exploratory analyses were also conducted examining the relationships between DTI measures in the corpus callosum and measures of intellectual functioning and facial dysmorphology. Results:, In comparison with the control group, the FASD group had significantly lower FA in 3 posterior tracts of the corpus callosum: the posterior mid-body, the isthmus, and the splenium. A trend-level finding also suggested lower FA in the genu. Measures of white matter integrity and cognition were correlated and suggest some regional specificity, in that only posterior regions of the corpus callosum were associated with visual-perceptual skills. Correlations between measures of facial dysmorphology and posterior regions of the corpus callosum were nonsignificant. Conclusions:, Consistent with previous DTI studies, these results suggest that microstructural posterior corpus callosum abnormalities are present in children with prenatal alcohol exposure and cognitive impairment. These abnormalities are clinically relevant because they are associated with cognitive deficits and appear to provide evidence of abnormalities associated with prenatal alcohol exposure independent of dysmorphic features. As such, they may yield important diagnostic and prognostic information not provided by the traditional facial characteristics. [source]


Altered White Matter Integrity in Adolescent Binge Drinkers

ALCOHOLISM, Issue 7 2009
Tim McQueeny
Background:, White matter integrity has been found to be compromised in adult alcoholics, but it is unclear when in the course of alcohol exposure white matter abnormalities become apparent. This study assessed microstructural white matter integrity among adolescent binge drinkers with no history of an alcohol use disorder. Methods:, We used diffusion tensor imaging to examine fractional anisotropy (FA), a measure of directional coherence of white matter tracts, among teens with (n = 14) and without (n = 14) histories of binge drinking but no history of alcohol use disorder, matched on age, gender, and education. Results:, Binge drinkers had lower FA than controls in 18 white matter areas (clusters ,27 contiguous voxels, each with p < 0.01) throughout the brain, including the corpus callosum, superior longitudinal fasciculus, corona radiata, internal and external capsules, and commissural, limbic, brainstem, and cortical projection fibers, while exhibiting no areas of higher FA. Among binge drinkers, lower FA in 6 of these regions was linked to significantly greater lifetime hangover symptoms and/or higher estimated peak blood alcohol concentrations. Conclusions:, Binge drinking adolescents demonstrated widespread reductions of FA in major white matter pathways. Although preliminary, these results could indicate that infrequent exposure to large doses of alcohol during youth may compromise white matter fiber coherence. [source]


Characterization of White Matter Microstructure in Fetal Alcohol Spectrum Disorders

ALCOHOLISM, Issue 3 2009
Susanna L. Fryer
Background:, Exposure to alcohol during gestation is associated with CNS alterations, cognitive deficits, and behavior problems. This study investigated microstructural aspects of putative white matter abnormalities following prenatal alcohol exposure. Methods:, Diffusion tensor imaging was used to assess white matter microstructure in 27 youth (age range: 8 to 18 years) with (n = 15) and without (n = 12) histories of heavy prenatal alcohol exposure. Voxelwise analyses, corrected for multiple comparisons, compared fractional anisotropy (FA) and mean diffusivity (MD) between groups, throughout the cerebrum. Results:, Prenatal alcohol exposure was associated with low FA in multiple cerebral areas, including the body of the corpus callosum and white matter innervating bilateral medial frontal and occipital lobes. Fewer between-group differences in MD were observed. Conclusions:, These data provide an account of cerebral white matter microstructural integrity in fetal alcohol spectrum disorders and support extant literature showing that white matter is a target of alcohol teratogenesis. The white matter anomalies characterized in this study may relate to the neurobehavioral sequelae associated with gestational alcohol exposure, especially in areas of executive dysfunction and visual processing deficits. [source]