Home About us Contact | |||
Fruit Fly (fruit + fly)
Kinds of Fruit Fly Terms modified by Fruit Fly Selected AbstractsManagement of Fruit Flies (Diptera: Tephritidae) of the Most Perishable FruitsENTOMOLOGICAL RESEARCH, Issue 2 2005Muhammad Ahsan KHAN ABSTRACT We investigated to minimize the dependency on the use of chemicals and thus develop safe and environmental friendly control program for the most perishable fruits i.e., apple,,ber', guava and mango. Our findings on the composition of fruit fly species reveal that Bactrocera dorsalis was dominant on apple (33.96% existence), Corpomya incompleta on,ber'(51.91% existence) and Bactrocera zonata on guava (49.62% existence) and mango (74.66% existence). The correlation between population and infestation percentage was non-significant in apple orchards, whereas positive and highly significant in between population and infestation, as well as on the cumulative basis in,ber', guava and mango orchards during 1998-1999. Hoeing, baiting and methyl eugenol were statistically equal resulting about 77% decrease in infestation. The maximum control of 91.68% was observed where all four-control operations including Dipterex® were integrated together. Weather factors, when computed together, had maximum effect on population fluctuation and infestation with rainfall contributing the major role. For guava fruits, the months of August (14.06A individuals/trap/day) and September (13.81A individuals/trap/day) were important, resulting in maximum infestation percentage of 10.76 to 14.74%, respectively. [source] Images from the Woods Hole Summer of 2009 Embryology CourseGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 9 2009Article first published online: 24 SEP 200 Shown are images of Drosophila melanogaster (Fruit fly), Xenopus laevis (African clawed frog), Schmidtea mediterranea (Planaria), Hydroides (Serpulid worm), Schistocerca americana (American bird grasshopper), Euprymna scolopes (Hawaiian bobtail squid), Ciona intestinalis (Vase tunicate), Phalangium opilio (Daddy longlegs), Artemia franciscana (Brine shrimp), Mustelus canis (Dogfish), Danio rerio (Zebrafish), Gallus gallus domesticus (Chicken), Mnemiopsis leidyi (Warty comb jelly), Oscarella carmela (Desmosponge), Chaetopterus variopedatus (Parchment worm), and the Marbled crayfish that were generated and taken by members of the Woods Hole Embryology Course in the summer of 2009. Photo credits: Neel Aluru, Otger Campas, Carlos Carmona-Fontaine, Sheng-hong Chen, Katrien De Mulder, April Dinwiddie, Adele M. Doyle, Antje Fischer, Claudiu Giurumescu, Lauretta Grasso, Alysha Heimberg, Francie Hyndman, Erin Kaltenbrun, Dov Lerman-Sinkoff, Dede Lyons, Chema Martin-Durán, Lara Marxreiter, Jeremy Mosher, Malea Murphy, Lee Niswander, Vincent Pasque, Nipam H. Patel, Alberto Roselló, Prashant Sharma, Ashley Siegel, Ajay Thomas, Frank Tulenko, Alex Vasilyev, and Naveen Wijesena. For more information on the Embryology Course, please visit http://www.mblembryology.org/. [source] Can host-range allow niche differentiation of invasive polyphagous fruit flies (Diptera: Tephritidae) in La Réunion?ECOLOGICAL ENTOMOLOGY, Issue 4 2008PIERRE-FRANCOIS DUYCK Abstract 1.,Biological invasions bring together formerly isolated insect taxa and allow the study of ecological interactions between species with no coevolutionary history. Among polyphagous insects, such species may competitively exclude each other unless some form of niche partitioning allows them to coexist. 2.,In the present study, we investigate whether the ability to exploit different fruits can increase the likelihood of coexistence of four species of polyphagous Tephritidae, one endemic and three successive invaders, in the island of La Réunion. In the laboratory, we studied the performances of all four species on the four most abundant fruit resources in the island, as well as the relative abundances of fly species on these four fruit species in the field. We observe no indication of niche partitioning for any of the four abundant fruits. 3.,Analyses of an extensive field data series suggest that: (i) the four fly species largely overlap in fruit exploitation, once climatic effects are accounted for; (ii) however, one species (Ceratitis capitata) can exploit rare fruit species that are not exploited by others present in the same climatic niche; and (iii) the endemic species C. catoirii, now nearly extinct in La Réunion, has no private niche with respect to either climatic range or fruit use. 4.,On the whole, with the possible exception of C. capitata, the results point to a limited role of fruit diversity in encouraging coexistence among polyphagous tephritids recently brought into contact by accidental introductions. [source] A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae)ECOLOGICAL ENTOMOLOGY, Issue 5 2004Pierre-Francois Duyck Abstract., 1. A number of invasions in the family Tephritidae (fruit flies) have been observed worldwide despite quarantine procedures. In this review, the potential importance of interspecific competition and competitive displacement among different tephritid species is evaluated in the context of recent invasions. 2. Where polyphagous tephritid species have been introduced in areas already occupied by a polyphagous tephritid, interspecific competition has resulted in a decrease in number and niche shift of the pre-established species. No reciprocal invasions have been observed. 3. The data on tephritid invasions seem to support a hierarchical mode of competition; however, complete exclusion usually did not occur. Indeed, tephritid distribution and abundance are markedly structured by various abiotic (mostly climatic) and biotic (host plants) factors. 4. The primary determinant of competitive interactions in near-optimal conditions, such as lowlands with abundant fruit plantations, is probably the life-history strategy. The r,K gradient could be used as a predictor of potential invaders, because K traits (such as large adult size) may favour both exploitation and interference competition. 5. For future research, a better understanding of competition mechanisms seems essential. Different species competing in the same area should be compared with respect to: (i) demographic parameters, (ii) the outcome of experimental co-infestations on the same fruit, and (iii) behavioural and chemical interference mechanisms. [source] Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organismsECOLOGICAL ENTOMOLOGY, Issue 5 2002Bregje Wertheim Abstract 1. Aggregation pheromones can evolve when individuals benefit from clustering. Such a situation can arise with an Allee effect, i.e. a positive relationship between individual fitness and density of conspecifics. Aggregation pheromone in Drosophila induces aggregated oviposition. The aim of the work reported here was to identify an Allee effect in the larval resource exploitation by Drosophila melanogaster, which could explain the evolution of aggregation pheromone in this species. 2. It is hypothesised that an Allee effect in D. melanogaster larvae arises from an increased efficiency of a group of larvae to temper fungal growth on their feeding substrate. To test this hypothesis, standard apple substrates were infested with specified numbers of larvae, and their survival and development were monitored. A potential beneficial effect of the presence of adult flies was also investigated by incubating a varying number of adults on the substrate before introducing the larvae. Adults inoculate substrates with yeast, on which the larvae feed. 3. Fungal growth was related negatively to larval survival and the size of the emerging flies. Although the fungal growth on the substrate was largely reduced at increased larval densities, the measurements of fitness components indicated no Allee effect between larval densities and larval fitness, but rather indicated larval competition. 4. In contrast, increased adult densities on the substrates prior to larval development yielded higher survival of the larvae, larger emerging flies, and also reduced fungal growth on the substrates. Hence, adults enhanced the quality of the larval substrate and significant benefits of aggregated oviposition in fruit flies were shown. Experiments with synthetic pheromone indicated that the aggregation pheromone itself did not contribute directly to the quality of the larval resource. 5. The interaction among adults, micro-organisms, and larval growth is discussed in relation to the consequences for total fitness. [source] Whole body extract of Mediterranean fruit fly males elicits high attraction in virgin femalesENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2008Vassilis G. Mavraganis Abstract The search for effective female attractants emanating from the host or body of fruit flies has been an area of intensive research for over three decades. In the present study, bodies of male Mediterranean fruit flies, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), were extracted with diethyl ether or methanol and subjected to gas chromatography,mass spectrometry. Analysis revealed substantial qualitative and quantitative differences between males from a laboratory culture and wild males captured alive in an orchard. Most notably, the hydrocarbon sesquiterpene (±)-,-copaene, which is known to be involved in the sexual behaviour of the species, was found in substantial amounts in wild males, but was not detected in laboratory males. In laboratory tests, 15 laboratory or wild male equivalents of diethyl ether extracts or combined diethyl ether and methanol extracts, or, to a lesser extent, methanol extracts alone, were found to attract virgin females. In a citrus orchard, traps baited with combined diethyl ether and methanol extracts of wild males attracted significantly more virgin females than traps baited with various doses of pyranone or blends of other compounds identified in the extracts or reported in the literature, such as ethyl acetate, ethyl-(E)-3-octenoate, and 1-pyrroline. Traps baited with blends of compounds, however, displayed substantial attractiveness compared to control (non-baited) traps. These results are important for better understanding the mating system of C. capitata as well as for further improving existing monitoring and control systems. [source] Effects of hunger level and nutrient balance on survival and acetylcholinesterase activity of dimethoate exposed wolf spidersENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2002Lars-Flemming Pedersen Abstract The influence of two nutritional factors (food quantity and quality) on the responses of a wolf spider, Pardosa prativaga (L.K.), to a high dose of the insecticide dimethoate, was investigated in a fully factorial experimental design. Spider groups with different (good and bad) nutrient balance were created by feeding them fruit flies of either high or low nutrient content for 28 days. Both groups were then split into satiated and 14 days starved subgroups. Each of these was further divided into insecticide treated and control halves. Survivorship and acetylcholinesterase (AChE) activity measured on the survivors were used as response variables. Survivorship after topical dimethoate exposure (LD50; 48 h) was influenced by spider body weight, nutrient balance, and starvation. Furthermore, AChE activity was significantly inhibited by dimethoate exposure. A significant interaction between nutrient balance, starvation, and dimethoate exposure revealed synergistic effects of starvation and nutrient imbalance on AChE inhibition by dimethoate in surviving spiders. These results show that the tolerance of non-target arthropods to dimethoate may vary depending on the nutritional history of the animal. [source] Captures of the olive fruit fly Bactrocera oleae on spheres of different coloursENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2001Byron I. Katsoyannos Abstract Alighting and capture of wild olive fruit flies, Bactrocera oleae (Rossi) (Diptera, Tephritidae), on spheres of seven different colours was studied on Chios island, Greece. The 70-mm-diam plastic spheres, coated with adhesive, were suspended on olive trees. Yellow and orange spheres trapped the greatest number of males while red and black spheres trapped the greatest number of females. White and blue spheres were the least effective for both sexes. Peak captures occurred in the late afternoon and especially around sunset. Since mating takes place in the last hours of the photophase, the increased captures during that period may be related to the sexual behaviour of the fly. When red spheres were assessed against glass McPhail traps baited with 2% ammonium sulphate, which consist a standard tool for monitoring the olive fruit fly in Greece, there were no significant differences in male captures. However, spheres trapped almost three times as many females as McPhail traps. The possible mechanisms underlying colour discrimination, the motivation of alighting flies and the possible use of red spheres for monitoring and controlling B. oleae are discussed. [source] Effects of methamidophos on the predating behavior of Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2007Lingling Deng Abstract The effects of an organophosphorous insecticide, methamidophos, on the pest control potential of the spider Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae) were investigated in the laboratory with the fruit flies (Drosophila melanogaster Meigen). The influence of methamidophos on predation by H. graminicola was very obvious in female spiders, which preyed on fewer prey in the 8 h after exposure to the insecticide but subsequently recovered. On the other hand, the predation rates in male spiders were not affected by the insecticide within 24 h of treatment. However, a 10% lethal dose (LD10) of methamidophos resulted in an enhanced predation rate per day for male spiders, whereas a 50% lethal dose reduced the predation rate. In addition, it was shown that the functional response of H. graminicola to the fruit fly was a type II response, and the type of functional response of insecticide-treated females changed from type II to type I, with no change in the response of male spiders. The attack rate of males treated with the LD10 dosage of insecticide was significantly higher than the controls, which suggests that the insecticide stimulates the performance of spiders. Prey utilization of males treated with low doses of insecticide was lower than the control, which indicates that the insecticide did not result in these spiders eating more prey, but killing more. [source] DNA barcoding: a new module in New Zealand's plant biosecurity diagnostic toolboxEPPO BULLETIN, Issue 1 2010K. Armstrong Molecular methods for identification of high risk pests and pathogens have been employed for more than a decade to supplement standard diagnostic protocols. However, as the volume of traded goods continues to increase so does the breadth of taxa that diagnosticians need to deal with. Keeping pace by introducing more molecular tests that are typically species-group specific is not an efficient way to progress. Since 2005 classical DNA barcoding using cytochrome oxidase I sequence has been employed routinely in New Zealand for the highest risk insect species (fruit flies and lymantriid moths). Subsequently a broader range of pests have been considered. Case studies are presented here for three important lepidopteran pests, Lymantria mathura (pink gypsy moth), Conogethes punctiferalis (yellow peach moth) and Hyphantria cunea (fall web worm), as well as a trial to identify miscellaneous border interceptions. While the data support the effectiveness of DNA barcoding for border diagnostics, they also raise issues around cryptic species identification and potential species discovery that could impact on operational biosecurity systems. [source] A NOVEL PREFERENCE FOR AN INVASIVE PLANT AS A MECHANISM FOR ANIMAL HYBRID SPECIATIONEVOLUTION, Issue 2 2007Dietmar Schwarz Homoploid hybrid speciation,speciation via hybridization without a change in chromosome number,is rarely documented and poorly understood in animals. In particular, the mechanisms by which animal homoploid hybrid species become ecologically and reproductively isolated from their parents are hypothetical and remain largely untested by experiments. For the many host-specific parasites that mate on their host, choosing the right host is the most important ecological and reproductive barrier between these species. One example of a host-specific parasite is the Lonicera fly, a population of tephritid fruit flies that evolved within the last 250 years likely by hybridization between two native Rhagoletis species following a host shift to invasive honeysuckle. We studied the host preference of the Lonicera fly and its putative parent species in laboratory experiments. The Lonicera fly prefers its new host, introduced honeysuckle, over the hosts of both parental species, demonstrating the rapid acquisition of preference for a new host as a means of behavioral isolation from the parent species. The parent taxa discriminate against each other's native hosts, but both accept honeysuckle fruit, leaving the potential for asymmetric gene flow from the parent species. Importantly, this pattern allows us to formulate hypotheses about the initial formation of the Lonicera fly. As mating partners from the two parent taxa are more likely to meet on invasive honeysuckle than on their respective native hosts, independent acceptance of honeysuckle by both parents likely preceded hybridization. We propose that invasive honeysuckle served as a catalyst for the local breakdown of reproductive isolation between the native parent species, a novel consequence of the introduction of an exotic weed. We describe behavioral mechanisms that explain the initial hybridization and subsequent reproductive isolation of the hybrid Lonicera fly. These results provide experimental support for a combination of host shift and hybridization as a model for hybrid speciation in parasitic animals. [source] A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIESEVOLUTION, Issue 5 2006Guillaume Martin Abstract The evolution of complex organisms is a puzzle for evolutionary theory because beneficial mutations should be less frequent in complex organisms, an effect termed "cost of complexity." However, little is known about how the distribution of mutation fitness effects (f(s)) varies across genomes. The main theoretical framework to address this issue is Fisher's geometric model and related phenotypic landscape models. However, it suffers from several restrictive assumptions. In this paper, we intend to show how several of these limitations may be overcome. We then propose a model of f(s) that extends Fisher's model to account for arbitrary mutational and selective interactions among n traits. We show that these interactions result in f(s) that would be predicted by a much smaller number of independent traits. We test our predictions by comparing empirical f(s) across species of various gene numbers as a surrogate to complexity. This survey reveals, as predicted, that mutations tend to be more deleterious, less variable, and less skewed in higher organisms. However, only limited difference in the shape of f(s) is observed from Escherichia coli to nematodes or fruit flies, a pattern consistent with a model of random phenotypic interactions across many traits. Overall, these results suggest that there may be a cost to phenotypic complexity although much weaker than previously suggested by earlier theoretical works. More generally, the model seems to qualitatively capture and possibly explain the variation of f(s) from lower to higher organisms, which opens a large array of potential applications in evolutionary genetics. [source] Regulation of calpain B from Drosophila melanogaster by phosphorylationFEBS JOURNAL, Issue 17 2009László Kovács Calpain B is one of the two catalytically competent calpain (calcium-activated papain) isoenzymes in Drosophila melanogaster. Because structural predictions hinted at the presence of several potential phosphorylation sites in this enzyme, we investigated the in vitro phosphorylation of the recombinant protein by protein kinase A as well as by the extracellular signal-regulated protein kinases (ERK) 1 and 2. By MS, we identified Ser845 in the Ca2+ binding region of an EF-hand motif, and Ser240 close to the autocatalytic activation site of calpain B, as being the residues phosphorylated by protein kinase A. In the transducer region of the protease, Thr747 was shown to be the target of the ERK phosphorylation. Based on the results of three different assays, we concluded that the treatment of calpain B with protein kinase A and ERK1 and ERK2 kinases increases the rate of the autoproteolytic activation of the enzyme, together with the rate of the digestion of external peptide or protein substrates. Phosphorylation also elevates the Ca2+ sensitivity of the protease. The kinetic analysis of phosphorylation mimicking Thr747Glu and Ser845Glu calpain B mutants confirmed the above conclusions. Out of the three phosphorylation events tested in vitro, we verified the in vivo phosphorylation of Thr747 in epidermal growth factor-stimulated Drosophila S2 cells. The data obtained suggest that the activation of the ERK pathway by extracellular signals results in the phosphorylation and activation of calpain B in fruit flies. Structured digital abstract ,,MINT-7214239: ERK1 (uniprotkb:P40417) phosphorylates (MI:0217) CalpainB (uniprotkb:Q9VT65) by protein kinase assay (MI:0424) ,,MINT-7214216, MINT-7214228: PKA (uniprotkb:P12370) phosphorylates (MI:0217) CalpainB (uniprotkb:Q9VT65) by protein kinase assay (MI:0424) ,,MINT-7214325: CalpainB (uniprotkb:Q9VT65) cleaves (MI:0194) MAP2C (uniprotkb:P11137) by protease assay (MI:0435) ,,MINT-7214275: ERK2 (uniprotkb:P40417-2) phosphorylates (MI:0217) CalpainB (uniprotkb:Q9VT65) by protein kinase assay (MI:0424) ,,MINT-7214319: CalpainB (uniprotkb:Q9VT65) and CalpainB (uniprotkb:Q9VT65) cleave (MI:0194) by protease assay (MI:0435) [source] Diflubenzuron inhibits reproduction of different strains of Drosophila melanogasterINSECT SCIENCE, Issue 4 2009Zbigniew Adamski Abstract, The effect of (1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea) insecticide , diflubenzuron , on wild type and white type fruit flies Drosophila melanogaster (Meigen, 1830) was studied. Adult insects were placed in vials with different concentrations of the insecticide in the nutrient (from 0.048 to 48 mg of diflubenzuron per 1 cm3 of the nutrient). In each case, the insects showed some mortality, which was concentration-dependant. When comparing both strains, we could observe different acute toxicities, with wild type being more resistant to diflubenzuron. However, subacute toxicity was similar within both strains. In both strains the prolonged exposure led to the extinction of the majority of the populations (>70%). Although imagoes could freely copulate, we did not observe copulating fruit flies, and we did not find either eggs or larvae in any of the exposed groups. These results indicate that genetic mutation which leads to different eye colour can also affect resistance and survival of insects in pesticide-exposed areas. [source] Climatic niche partitioning following successive invasions by fruit flies in La RéunionJOURNAL OF ANIMAL ECOLOGY, Issue 2 2006PIERRE-FRANÇOIS DUYCK Summary 1Biological invasions have profound effects on community structure. The community composition following invasions can be influenced by the habitat diversity and the species' responses to abiotic factors. 2We evaluated the tolerance to climatic factors and analysed the field distribution of four polyphagous fruit flies (Diptera: Tephritidae) of La Réunion Island (three exotic species that successively invaded the island and the endemic species Ceratitis catoirii) in order to evaluate the opportunities of coexistence by niche differentiation. 3Atmospheric humidity and immersion in water in the laboratory greatly influence the survival of fruit fly pupae. While C. catoirii and C. rosa are very sensitive to desiccation, C. capitata and especially Bactrocera zonata are relatively tolerant. B. zonata also tolerated immersion in water much longer than did C. rosa and C. catoirii, that in turn were more resistant than C. capitata. Overall, field distributions agree with the predictions based on this study of humidity combined with previous data on the effects of temperature. 4Climatic niche partitioning promotes coexistence between some but not all pairs of invasive species. Thus, C. rosa can coexist with both C. capitata and B. zonata at the regional scale, while climatic niches are not different enough to promote coexistence of the latter two species. The endemic species has no private climatic niche either and this now very rare species could be in the process of extinction. 5By promoting coexistence or not, climatic diversity in invaded areas can directly affect the community composition following invasions. [source] Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predatorJOURNAL OF ANIMAL ECOLOGY, Issue 1 2006DAVID MAYNTZ Summary 1Cannibalism is considered an adaptive foraging strategy for animals of various trophic positions, including carnivores. However, previous studies on wolf spiders have questioned the high nutritional value of cannibalism. We therefore analysed two different aspects of nutritional quality of conspecifics in the wolf spider Pardosa prativaga: their value for survival, growth and development; and the growth efficiency of feeding on conspecifics. We also measured the propensity for cannibalistic attacks and the consumption rate of conspecifics in an experiment where hunger level and nutrient balance were manipulated. In all experiments, cannibalism was compared with predation on fruit flies as control prey. 2The growth experiment gave ambiguous results regarding the nutritional quality of conspecifics. Spiders on pure cannibalistic diets split into two distinct groups, one performing much better and the other much worse than spiders on fruit fly diets. We discuss the possibility that the population is dimorphic in its cannibalistic propensity, with the latter group of individuals showing a high level of inhibition against cannibalistic attacks in spite of a high nutritional value of cannibalism. 3The food utilization experiment confirmed the high nutritional quality of conspecifics, as cannibalistic spiders had the same growth rate as spiders fed insect prey in spite of a much lower consumption rate. 4Inhibition against cannibalistic attacks was demonstrated in medium-sized juveniles: only half of the spiders attacked a prescribed victim of 50% the size of their opponents, and the latency for those that did attack was more than half an hour, compared with a few minutes for spiders fed fruit flies. 5Nutrient-imbalanced spiders utilized an alternative insect diet less efficiently than balanced spiders, whereas no difference was present in efficiency of utilizing conspecifics. This result indicates that spiders can remedy at least part of a nutrient imbalance through cannibalism. 6As spiders can escape nutritional imbalance as well as restore energy reserves through cannibalism, we predicted both nutrient imbalance and hunger to stimulate cannibalism. This prediction was confirmed only with respect to hunger. Nutrient-imbalanced spiders had reduced cannibalistic consumption, perhaps due to lowered predatory aggressiveness as a result of bad condition. [source] Dispersal of mass-reared sterile, laboratory-domesticated and wild male Queensland fruit fliesJOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2010C. Weldon Abstract Queensland fruit flies, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (,Q-flies') were released as sexually immature adults from a point within an orchard. Marked male Q-flies were recaptured in the trap furthest from the release point (1087 m) by 2 weeks after release, although 98.25 ± 1.04% of recaptured males were trapped <500 m from the release point. Comparison of gamma-irradiated (sterile), laboratory-adapted and wild male Q-flies indicated that dispersal distance was not significantly affected by fly type. There was no significant correlation between temperature and mean dispersal distance, but total recaptures were significantly negatively correlated with increasing daily maximum, minimum and average temperature. [source] Fruit fly liquid larval diet technology transfer and updateJOURNAL OF APPLIED ENTOMOLOGY, Issue 3 2009C. L. Chang Abstract Since October 2006, the US Department of Agriculture,Agricultural Research Service (USDA,ARS) has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) recruitment of interested groups through request; (2) establishment of the Material Transfer Agreement with agricultural research service; (3) fruit fly liquid larval diet starter kit sent to the requestor for preliminary evaluation; (4) problem-solving through email or onsite demonstration; (5) assessment on feedback from the participants to decide whether to continue the project. Up to date, the project has involved 35 participants from 29 countries and 26 species of fruit flies. Fourteen participants have concluded their evaluation of the process, and 11 of these 14, have deemed it to be successful. One participant has decided to implement the project on a larger scale. The 14 participants were, Argentina (Ceratitis capitata and Anastrepha fraterculus), Bangladesh (Bactrocera cucurbitae, C. capitata, and Bactrocera dorsalis), China (Fujia province) (B. dorsalis), Italy (C. capitata), Fiji (Bactrocera passiflorae), Kenya (Bactrocera invadens, Ceratitis cosyra), Mauritius (Bactrocera zonata and B. cucurbitae), Mexico (Anastrepha species), Philippines (Bactrocera philippinese), Thailand (Bactrocera correcta), Austria (C. capitata, Vienna 8 and A. fraterculus), Israel (Dacus ciliatus and C. capitata), South Africa (C. capitata, Vienna 8) and Australia (C. capitata). The Stellenbosch medfly mass-rearing facility in South Africa and the CDFA in Hawaii were two mass-scale rearing facilities that allowed us to demonstrate onsite rearing in a larger scale. Demonstrations were performed in CDFA in 2007, and in Stellenbosch, South Africa in 2008; both were found to be successful. The Stellenbosch medfly mass-rearing facility in South Africa decided to adopt the technology and is currently evaluating the quality control of the flies that were reared as larvae on a liquid diet. [source] Bacteria,diet interactions affect longevity in the medfly ,Ceratitis capitataJOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2008M. Ben-Yosef Abstract Mediterranean fruit flies (Ceratitis capitata Wiedemann, Dipt.: Tephritidae) harbour a diverse community of bacteria in their digestive system. This microbiota may have important functions impacting on the fly's fitness. Recently, we described the effect of eliminating intestinal bacteria on the reproductive success of C. capitata males and females. Here, we expand the view on the nature of fly,bacteria interactions by examining the effect of bacteria on male and female longevity. Antibiotics were used to suppress the gut bacterial community and mortality rates were compared between antibiotic-treated and non-treated flies when either nutritionally stressed (maintained on sugar) or provided with a full diet. These tests revealed that eliminating the gut bacterial population prolonged longevity, but only when flies were nutritionally stressed, indicating that the effect of bacteria on lifespan was diet dependent. Considering these results in light of other known effects of bacteria on fitness components of the fly demonstrates a cost-benefit relationship between C. capitata and its gut microbiota. [source] Adhesive powder uptake and transfer by Mediterranean fruit flies, Ceratitis capitata (Dipt., Tephritidae)JOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2006L. Barton Abstract:, EntostatTM is an electrostatically charged wax powder that is used as a carrier particle in novel delivery systems for contaminating target insect pests with insecticides, biologicals or pheromones. Here, the adhesion of two forms of Entostat to the Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) was examined, and the adhesion of Entostat to live and dead medflies was compared. From controlled contaminations of medflies, it was shown that live medflies acquired larger quantities of Entostat than dead medflies, which could be due to the electrostatic charge shown to be carried by live insects. Air-milled Entostat (7.59 ,m mean diameter) adhered in larger quantities to medflies than pestle and mortar-ground Entostat (9.17 ,m mean diameter). Exposing medflies to different quantities of Entostat affected the initially adhering quantity but did not alter the proportion of powder retained over time. Medfly males contaminated with air-milled Entostat were shown to transfer small quantities to females during mating. This documentation of secondary powder transfer underscores the potential for using slow-acting killing agents on the basis of this delivery system. [source] The fruit fly PUB: a phagostimulation unit bioassay system to quantitatively measure ingestion of baits by individual fliesJOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2004D. Nestel Abstract:, A bioassay to investigate quantitative phagostimulation and ingestion physiology of baits on individual fruit flies is presented. The study was undertaken using two fruit fly species: the Mediterranean fruit fly (Ceratitis capitata), a cosmopolitan insect pest, and the Ethiopian fruit fly (Dacus ciliatus), a quarantine insect in Israel. Our model bait suspension included spinosad as the toxic agent, and 1% yeast hydrolysate with 10% sucrose as phagostimulant. A preliminary toxicology study showed that the two fruit flies are highly sensitive to low concentrations of spinosad baited with this phagostimulant. The maximum concentration needed to kill 90% of the female flies was 4.2 and 8.5 p.p.m. for C. capitata and D. ciliatus, respectively. The bioassay was able to detect the ingestion of low volumes (e.g. 1 ,l) of tested solutions. The bioassay was also able to detect differences in intake of different concentrations of spinosad solutions and relate ingestion to fruit fly mortality. Additionally, the bioassay was sensitive enough to highlight differences in intake related to the physiological status of the fruit fly and fly species. The bioassay can also be used to follow ingestion kinetics of baits. We expect that this bioassay will contribute in the exploration of more efficient bait systems for fruit flies. [source] Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni)AGING CELL, Issue 5 2009Benjamin G. Fanson Summary Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS. [source] The mode of evolution of aggregation pheromones in Drosophila speciesJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2005M. R. E. SYMONDS Abstract Aggregation pheromones are used by fruit flies of the genus Drosophila to assemble on breeding substrates, where they feed, mate and oviposit communally. These pheromones consist of species-specific blends of chemicals. Here, using a phylogenetic framework, we examine how differences among species in these pheromone blends have evolved. Theoretical predictions, genetic evidence, and previous empirical analysis of bark beetle species, suggest that aggregation pheromones do not evolve gradually, but via major, saltational shifts in chemical composition. Using pheromone data for 28 species of Drosophila we show that, unlike with bark beetles, the distribution of chemical components among species is highly congruent with their phylogeny, with closely related species being more similar in their pheromone blends than are distantly related species. This pattern is also strong within the melanogaster species group, but less so within the virilis species group. Our analysis strongly suggests that the aggregation pheromones of Drosophila exhibit a gradual, not saltational, mode of evolution. We propose that these findings reflect the function of the pheromones in the ecology of Drosophila, which does not hinge on species specificity of aggregation pheromones as signals. [source] The chronological life span of Saccharomyces cerevisiaeAGING CELL, Issue 2 2003Paola Fabrizio Summary Simple model systems have played an important role in the discovery of fundamental mechanisms of aging. Studies in yeast, worms and fruit flies have resulted in the identification of proteins and signalling pathways that regulate stress resistance and longevity. New findings indicate that these pathways may have evolved to prevent damage and postpone aging during periods of starvation and may be conserved from yeast to mammals. We will review the yeast S. cerevisiae model system with emphasis on the chronological life span as a model system to study aging and the regulation of stress resistance in eukaryotes. [source] Expanding radiation quarantine treatments beyond fruit fliesAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2000Guy J. Hallman Abstract 1 The potential of ionizing radiation as a disinfestation treatment for insects other than tephritid fruit flies is discussed. Radiation quarantine treatments are unique in that insects are not killed immediately but rendered sterile or incapable of completing development. 2 The most tolerant insect stage to radiation is that which is most developed. Female insects, but not always mites, are sterilized with equal or lower doses than males. 3 Insects irradiated with sterilizing doses usually have shorter longevities than non-irradiated ones. Low oxygen conditions often increase tolerance to radiation. 4 Insects in diapause are not more tolerant of radiation than non-diapausing ones. 5 Some pests of several groups, such as aphids, whiteflies, weevils, scarab beetles, and fruit flies, may be controlled with doses ,,100 Gy. Some lepidopterous pests and most mites require about 300 Gy. Stored product moths may require as much as 1 kGy to sterilize, and nematodes could need >,4 kGy. 6 Even though application of irradiation to pallet-loads of produce could mean that up to three times the minimum required dose is applied to the perimeter of the pallet, many fresh commodities tolerate doses required for quarantine security against many quarantined pests. Irradiation is arguably the most widely applicable quarantine treatment from the standpoint of commodity quality. [source] State-dependent prey type preferences of a kleptoparasitic spider Argyrodes flavescens (Araneae: Theridiidae)JOURNAL OF ZOOLOGY, Issue 3 2003Teck Hui Koh Spiders from the theridiid genus Argyrodes exhibit considerable variation in foraging tactics. However, little is known about the conditions under which Argyrodes spiders switch foraging tactics. Argyrodes flavescens (Pickard-Cambridge) is commonly found in the webs of another spider Nephila pilipes (Fabricius) in Singapore. In this study, a series of prey-choice tests were conducted for A. flavescens, both in the presence and absence of N. pilipes, to investigate the state-dependent prey type preference of A. flavescens. It was found that, in the absence of N. pilipes, well-fed A. flavescens took houseflies more than fruit flies, but starved A. flavescens took more fruit flies than houseflies. Whether N. pilipes spiders were present or absent, both well-fed and starved A. flavescens preferred living prey and rarely took wrapped prey of any kind. When well fed, A. flavescens rarely took mealworms. However, when starved, A. flavescens tended to take freshly captured prey, and also tended to feed together with N. pilipes on a housefly or mealworm captured by N. pilipes. Whether A. flavescens were absent or present, both well-fed and starved N. pilipes took mealworm larvae more often than they took houseflies, and they never attacked fruit flies. This is the first study to show that Argyrodes spiders alter their foraging tactics depending on hunger level, prey type, or the presence of the host. In doing so, Argyrodes spiders may maximize their energy gain and minimize predation risk in different circumstances. [source] Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitataMOLECULAR ECOLOGY, Issue 9 2005A. BEHAR Abstract Nitrogen, although abundant in the atmosphere, is paradoxically a limited resource for multicellular organisms. In the Animalia, biological nitrogen fixation has solely been demonstrated in termites. We found that all individuals of field-collected Mediterranean fruit flies (Ceratitis capitata) harbour large diazotrophic enterobacterial populations that express dinitrogen reductase in the gut. Moreover, nitrogen fixation was demonstrated in isolated guts and in live flies and may significantly contribute to the fly's nitrogen intake. The presence of similar bacterial consortia in additional insect orders suggests that nitrogen fixation occurs in vast pools of terrestrial insects. On such a large scale, this phenomenon may have a considerable impact on the nitrogen cycle. [source] Microbial mediation of fruit fly,host plant interactions: is the host plant the "centre of activity"?OIKOS, Issue 3 2002S. Raghu Insects utilize resources in their environment with the aid of mutualistic or symbiotic mediation by microorganisms. Some insect species such as ants and termites often have complex ecological and evolutionary associations with their symbionts, while the nature and functional significance of such associations in non-social insects is often unclear. In the Dacinae (Diptera: Tephritidae), specific Enterobacteriaceae (Erwiniaherbicola, Enterobactercloacae, Klebsiellaoxytoca) are believed to mediate interactions between the adult fruit flies and the larval host plant. This bacterial mediation is hypothesized as being integral to the larval host plant being the "centre of activity" of the fly. Using a non-pest, monophagous fruit fly (Bactroceracacuminata [Hering]), we tested this hypothesis by manipulating the fruiting state of its larval host plant (Solanum mauritianum Scopoli) and subsequently assessing insect behaviour and phylloplane microflora on those hosts. On host plants that had never fruited, few flies or bacterial colonies were recorded, consistent with hypothesis expectations. On fruiting host plants or plants that had had their fruit removed, bacterial colonies were present; again consistent with expectation. However, few flies were recorded on fruit-removed plants and all fly behaviours, other than resting or oviposition, were rare or absent on any hosts; inconsistent with expectation. The general pattern of results suggested that female flies coming to oviposit on fruiting hosts were spreading Enterobacteriaceae, but such spread was incidental and not part of some mutualistic interaction between fruit flies and bacteria. [source] Can ant-eating Zodarion spiders (Araneae: Zodariidae) develop on a diet optimal for euryphagous arthropod predators?PHYSIOLOGICAL ENTOMOLOGY, Issue 2 2009STANO PEKÁR Abstract Little attention is paid to the behavioural and physiological adaptations of ant-eating predators. It is expected that there should be a strong selection for traits related to prey handling, leading to the evolution of morphological, behavioural and nutritional adaptations. Such adaptations may then entail trade-offs in handling and utilization of alternative prey. To investigate behavioural as well as nutritional adaptations and the occurrence of the corresponding trade-offs in two ant-eating spiders of the genus Zodarion [Zodarion atlanticum Pekár & Cardoso and Zodarion germanicum (C. L. Koch)], spiders are reared on two diets: ants (i.e. their preferred prey) and fruit flies (i.e. an alternative prey that is nutritionally optimal for euryphagous spiders). Food consumption is observed and several fitness-related life-history parameters are measured. Although spiders readily accept ants, more than one-third of 35 spiders refuse to consume fruit flies and starve. Furthermore, severe hunger does not induce these individuals to accept fruit flies. Starving spiders die before moulting to the second stadium. Spiders that eat fruit flies increase only little and slowly in weight, and all of these die during the first two stadia. By contrast, spiders on an ant diet increase dramatically in weight, and develop up to the fourth stadium. These data indicate that fruit flies are not suitable for Zodarion, supporting the hypothesis that there are behavioural and nutritional trade-offs. Taking into account the results of previous studies, it is suggested that nutritional trade-offs are generally important for stenophagous spiders. [source] Copula duration and sperm storage in Mediterranean fruit flies from a wild populationPHYSIOLOGICAL ENTOMOLOGY, Issue 1 2000P.H.illip W. Taylor Summary In the Mediterranean fruit fly (Ceratitis capitata Weidemann, ,medfly'), a lekking tephritid, evidence from laboratory studies of flies from laboratory strains suggests that copulation is shorter, and sperm storage more abundant, if males are large or protein-fed, and that copulation is longer when females are large. In addition, sperm tend to be stored asymmetrically between the female's two spermathecae and this asymmetry declines with abundance of stored sperm. The primary objective of this study was to investigate whether these trends persist in other experimental contexts that bear closer resemblance to nature. Accordingly, we carried out experiments in a field-cage using males derived as adults from a wild population and virgin females reared from naturally infested fruit. The results of this study were consistent with laboratory studies in that copula duration increased with female size, that sperm were stored asymmetrically between the females' spermathecae, and that this asymmetry declined with number of sperm stored. However, we also found some previously unreported effects of female size; large females stored more sperm and stored sperm more asymmetrically between their two spermathecae than did small females. Unlike the laboratory studies, copula duration and sperm storage patterns were unaffected by male size and diet. This may be due to overwhelming variation from other sources in the wild-collected males used, as well as environmental variability in the semi-natural setting. [source] |