Home About us Contact | |||
Form Distribution (form + distribution)
Selected AbstractsBonding Form Analysis of Metals and Sulfur Fractionation in Methanol-Grown Anaerobic Granular SludgeENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 5 2007A. van der Veen Abstract This study investigates the metal and sulfur bonding form distribution in mesophilic (30,°C, pH 7) methanol-grown anaerobic granular sludge from upflow anaerobic sludge bed reactors operating at an organic loading rate of 3.8,g CH3OH-COD/L d. This was achieved by applying a modified Tessier sequential extraction scheme to investigate the metal bonding forms and a sequential extraction scheme for sulfur and simultaneously extracted metals to granular sludge samples of the reactors after 0, 22, 35 and 43 days of operation. Metals were also determined in the sulfur extracts. Co and Ni predominated in their oxidizable bonding forms, which increased together with the pseudo-total content during reactor operation. An omission of Co and Ni from the influent led to only a minor decline of the pseudo-total content in the sludge, mainly from the acid-soluble fraction. The ratio of simultaneously extracted metals (Co, Fe, Mn, Ni) to acid-volatile sulfides was lower than 1, indicating that the sludge contained sufficient sulfide to bind the metals as metal monosulfides. The bioavailability of metals in the methanol-grown anaerobic granular sludge investigated is therefore mainly controlled by sulfide formation/dissolution. [source] Structural patterns in coarse gravelriver beds: typology, survey and assessment of the roles of grain size and river regimeGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2002Lea Wittenberg The concept of river-bed stability as indexed by the occurrence of stable bed forms was examined in humid-temperate perennial streams and in Mediterranean ephemeral streams. The study examined the structural patterns of bed forms and their spatial distribution between temperate-humid and Mediterranean streams. Study sites in Northumberland, UK, and Mt. Carmel, Israel, were selected for their morphometric similarity, despite the contrast in climate, vegetation and hydrological regime. Fieldwork was based on a large number of Wolman grain size distributions and structure measurements along cross-sections at seven sites; Differences in mean grain size of bed structures were estimated using the general linear model (GLM) procedure and Duncan's multiple range test. Based on field evidence, river-bed configurations were divided into structural categories, according to the depositional setting of each measured particle on the river bed. Statistical analysis confirmed former qualitative descriptions of small-scale bed forms. The study identified spatial segregation in bed form distribution. In general, 30,40%of the bed material in the surveyed perennial streams was clustered, in contrast to approximately 10%in the ephemeral counterparts. The sorting index revealed higher values for the perennial streams, namely 2.39,3.59 compared with 1.73,2.07 for the ephemeral counterparts. It is suggested that the degree of sediment sorting and the proportion of clusters are strongly related. Sediment sorting, sediment supply and the hydrological regime explain the mechanism of cluster formation. It is assumed that climate shifts or human interference within river basins might affect the regional characteristic flood hydrograph, and consequently alter the sedimentary character of the river bed. In the case where river bed stability is reduced owing to changes in cluster bed form distribution, rivers that normally do not yield a significant amount of sediment might be subject to notable sedimentation problems. [source] Species,area relationships in Mediterranean-climate plant communitiesJOURNAL OF BIOGEOGRAPHY, Issue 11 2003Jon E. Keeley Abstract Aim To determine the best-fit model of species,area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species,area models. Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions. Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1,100 m2 and 100,1000 m2. Dominance,diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series. Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species,area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance,diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The potential for community reassembly is greater in Californian shrublands where only a quarter of the flora resprout, whereas three quarters resprout in Australian heathlands. Other Californian vegetation types sampled include coniferous forests, oak savannas and desert scrub, and demonstrate that different community structures may lead to a similar species,area relationship. Dominance,diversity relationships for coniferous forests closely follow a geometric model whereas associated oak savannas show a close fit to the lognormal model. However, for both communities, species,area curves fit a power model. The primary driver appears to be the presence of annuals. Desert scrub communities illustrate dramatic changes in both species diversity and dominance,diversity relationships in high and low rainfall years, because of the disappearance of annuals in drought years. Main conclusions Species,area curves for immature shrublands in California and the majority of Mediterranean plant communities fit a power function model. Exceptions that fit the exponential model are not because of sampling error or scaling effects, rather structural differences in these communities provide plausible explanations. The exponential species,area model may arise in more than one way. In the highly diverse Australian heathlands it results from a rapid increase in species richness at small scales. In mature California shrublands it results from very depauperate richness at the community scale. In both instances the exponential model is tied to a preponderance of perennials and paucity of annuals. For communities fit by a power model, coefficients z and log c exhibit a number of significant correlations with other diversity parameters, suggesting that they have some predictive value in ecological communities. [source] |