Home About us Contact | |||
Forest Understorey (forest + understorey)
Selected AbstractsDiversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian AndesDIVERSITY AND DISTRIBUTIONS, Issue 5 2005Nadine Hilt ABSTRACT Andean montane rain forests are among the most species-rich terrestrial habitats. Little is known about their insect communities and how these respond to anthropogenic habitat alteration. We investigated exceptionally speciose ensembles of nocturnal tiger moths (Arctiidae) at 15 anthropogenically disturbed sites, which together depict a gradient of forest recovery and six closed-forest understorey sites in southern Ecuador. At weak light traps we sampled 9211 arctiids, representing 287 species. Arctiid abundance and diversity were highest at advanced succession sites, where secondary scrub or young forest had re-established, followed by early succession sites, and were lowest, but still high, in mature forest understorey. The proportion of rare species showed the reverse pattern. We ordinated moth samples by non-metric multidimensional scaling using the chord-normalized expected species shared index (CNESS) index at various levels of the sample size parameter m. A distinct segregation of arctiid ensembles at succession sites from those in mature forest consistently emerged only at high m -values. Segregation between ensembles of early vs. late succession stages was also clear at high m values only, and was rather weak. Rare species were responsible for much of the faunal difference along the succession gradient, whereas many common arctiid species occurred in all sites. Matrix correlation tests as well as exploration of relationships between ordination axes and environmental variables revealed the degree of habitat openness, and to a lesser extent, elevation, as best predictors of faunal dissimilarity. Faunal differences were not related to geographical distances between sampling sites. Our results suggest that many of the more common tiger moths of Neotropical montane forests have a substantial recolonization potential at the small spatial scale of our study and accordingly occur also in landscape mosaics surrounding nature reserves. These species contribute to the unexpectedly high diversity of arctiid ensembles at disturbed sites, whereas the proportion of rare species declines outside mature forest. [source] Allocation of above-ground growth is related to light in temperate deciduous saplingsFUNCTIONAL ECOLOGY, Issue 4 2003D. A. King Summary 1Allocational shifts in response to light may be an important factor in allowing plants to survive in shade, while increasing their extension rates and competitive ability in sun. To investigate this response, the allocation of above-ground growth between leaves, branches and stems was studied in saplings of Acer pensylvanicum L. and Castenea dentata (Marsh.) Borkh. in the Appalachian mountains of western Virginia, USA. Measurements of current leaf biomass, current and past year leaf numbers and the growth ring widths of branches and stem were used to estimate biomass partitioning for saplings growing in locations ranging from forest understorey to large openings. 2Both species showed higher leaf area per unit leaf biomass (SLA) and higher allocation of above-ground growth to leaves in shade than in sun. 3There were no differences between species in the slopes of the relationships of allocation and SLA vs estimated irradiance, but SLA was significantly greater in A. pensylvanicum than in C. dentata at a given light level. Hence, somewhat lower production per unit leaf area is required to maintain the canopy in A. pensylvanicum, consistent with foresters' ratings of greater shade tolerance for this species. 4Greater foliar allocation in shade than sun has also been observed in broad-leaved evergreen saplings, but generally not in seedlings. This difference is probably related to differences in size and age between seedlings and saplings. Young seedlings typically show exponential growth with no immediate foliar losses, while shaded saplings lie closer to the steady state where new leaves replace old ones with little additional stem growth. 5Thus trees shift their allocation patterns in an acclimatory fashion, depending on their size and light environment, with the costs of replacing senesced leaves becoming of consequence as juveniles age. [source] Anthropogenic disturbance and the formation of oak savanna in central Kentucky, USAJOURNAL OF BIOGEOGRAPHY, Issue 5 2008Ryan W. McEwan Abstract Aim, To deepen understanding of the factors that influenced the formation of oak savanna in central Kentucky, USA. Particular attention was focused on the link between historical disturbance and the formation of savanna ecosystem structure. Location, Central Kentucky, USA. Methods, We used dendrochronological analysis of tree-ring samples to understand the historical growth environment of remnant savanna stems. We used release detection and branch-establishment dates to evaluate changes in tree growth and the establishment of savanna physiognomy. We contrasted our growth chronology with reference chronologies for regional tree growth, climate and human population dynamics. Results, Trees growing in Kentucky Inner Bluegrass Region (IBR) savanna remnants exhibited a period of suppression, extending from the establishment date of the tree to release events that occurred c. 1800. This release resulted in a tripling of the annual radial growth rate from levels typical of oaks suppressed under a forest canopy (< 1 mm year,1) to levels typical of open-grown stems (3 mm year,1). The growth releases in savanna trees coincided with low branch establishment. Over the release period, climatic conditions remained relatively constant and growth in regional forest trees was even; however, the growth increase in savanna stems was strongly correlated with a marked increase in Euro-American population density in the region. Main conclusions, Our data suggest that trees growing in savanna remnants originated in the understorey of a closed canopy forest. We hypothesize that Euro-American land clearing to create pasturelands released these trees from light competition and resulted in the savanna physiognomy that is apparent in remnant stands in the IBR. Although our data suggest that savanna trees originated in a forest understorey, this system structure itself may have been a result of an unprecedented lack of Native American activity in the region due to population loss associated with pandemics brought to North America by Euro-Americans. We present a hypothetical model that links human population dynamics, land-use activities and ecosystem structure. Our model focuses on the following three land-use eras: Native American habitation/utilization; land abandonment; and Euro-American land clearance. Ecological understanding of historical dynamics in other ecosystems of eastern North America may be enhanced through recognition of these eras. [source] Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes?JOURNAL OF BIOGEOGRAPHY, Issue 1 2006Nadine Hilt Abstract Aim, We examined changes in the species diversity and faunal composition of arctiid moths along a successional gradient at a fine spatial scale in one of the world's hot spots for moths, the Andean montane rain forest zone. We specifically aimed to discover whether moth groups with divergent life histories respond differentially to forest recovery. Location, Southern Ecuador (province Zamora-Chinchipe) along a gradient from early successional stages to mature forest understorey at elevations of 1800,2005 m a.s.l. Methods, Moths were sampled with weak light traps at 21 sites representing three habitat categories (early and late succession, mature forest understorey), and were analysed at species level. Relative proportions were calculated from species numbers as well as from specimen numbers. Fisher's , was used as a measure of local diversity, and for ordination analyses non-metric multidimensional scaling (NMDS) was carried out. Results, Proportions of higher arctiid taxa changed distinctly along the successional gradient. Ctenuchini (wasp moths) contributed more strongly to ensembles in natural forest, whereas Lithosiinae (lichen moths) decreased numerically with forest recovery. Arctiid species diversity (measured as Fisher's ,) was high in all habitats sampled. The three larger subordinated taxa contributed differentially to richness: Phaegopterini (tiger moths) were always the most diverse clade, followed by Ctenuchini and Lithosiinae. Local species diversity was higher in successional habitats than in forest understorey, and this was most pronounced for the Phaegopterini. Dominance of a few common species was higher, and the proportion of species represented as singletons was lower, than reported for many other tropical arthropod communities. NMDS revealed a significant segregation between ensembles from successional sites and from forest understorey for all larger subordinated taxa (Phaegopterini, Ctenuchini, Lithosiinae). Abandoned pastures held an impoverished, distinct fauna. Faunal segregation was more pronounced for rare species. Ordination axes reflected primarily the degree of habitat disturbance (openness of vegetation, distance of sites from mature forest) and, to a lesser extent, altitude, but not distance between sampling sites. Main conclusions, Despite the geographical proximity of the 21 sites and the pronounced dispersal abilities of adult arctiid moths, local ecological processes were strong enough to allow differentiation between ensembles from mature forest and disturbed sites, even at the level of subfamilies and tribes. Differences in morphology and life-history characteristics of higher arctiid taxa were reflected in their differential representation (proportions of species and individuals) at the sites, whereas patterns of alpha and beta diversity were concordant. However, concordance was too low to allow for reliable extrapolation, in terms of biodiversity indication, from one tribe or subfamily to the entire family Arctiidae. Phaegopterini (comprising more putative generalist feeders during the larval stages) benefited from habitat disturbance, whereas Ctenuchini (with host-specialist larvae) were more strongly affiliated with forest habitats. [source] Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forestJOURNAL OF ECOLOGY, Issue 2 2007JONATHAN A. MYERS Summary 1To survive in forest understoreys, seedlings must depend on carbohydrate reserves when they experience negative carbon balance imposed by occasional light reduction and tissue loss to herbivores and diseases. We present the first experimental evidence in support of this hypothesis, using seven woody neotropical species. 2We transplanted seedlings that had recently expanded their first photosynthetic cotyledon or leaf to the forest understorey (1% of full sun) and quantified initial biomass and total non-structural carbohydrate (TNC) in stems, roots and storage cotyledons. We then randomly assigned seedlings to control and two stress treatments: light reduction (0.08% of full sun for 8 weeks) and complete defoliation. 3First-year survival of control seedlings, a comparative measure of shade tolerance, differed widely among species. The two stress treatments reduced survival and relative growth rates (RGR) of all species. Shade-tolerant species were little impacted by the stress treatments, whereas the two least shade-tolerant species experienced 100% mortality. 4In all treatments, 8-week and first-year survival was positively correlated with initial TNC pool size in stems and roots. By contrast, survival was generally not correlated with initial TNC concentration in any organ, TNC pools in cotyledons, seed mass or seedling biomass. 5TNC in stems and roots, but not in cotyledons, decreased in response to light reduction and defoliation over 8 weeks. Leaf area recovery of defoliated seedlings was positively correlated with initial TNC pools in stems and roots. 6First-year survival in each treatment was negatively correlated with 0,8 week RGR of control seedlings, suggesting higher stress tolerance of species with inherently slow growth rates in shade. RGR of control seedlings from 0 to 8 weeks was negatively correlated with initial TNC pools, but not concentrations, in stems and roots. After 8 weeks, RGR was positive for all species, without clear relationships with survival or TNC. 7We conclude that carbohydrate storage in stems and roots enhances long-term survival in shade by enabling seedlings to cope with periods of biotic and abiotic stress. Carbohydrate storage is a key functional trait that can explain species differences in growth and survival that lead to species coexistence through niche assembly processes and life-history trade-offs. [source] Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in GhanaJOURNAL OF VEGETATION SCIENCE, Issue 5 2008T. Toledo-Aceves Abstract Questions: Do lianas alter the relative success of tree species during regeneration? Are the effects of lianas on tree seedlings moderated by canopy openness? How are patterns of biomass allocation in tree seedlings affected by liana competition? Location: Tropical moist semi-deciduous forest in Ghana. Methods: Seedlings of the trees Nauclea diderrichii (pioneer), Khaya anthotheca (non-pioneer light demander) and Garcinia kola (non-pioneer shade bearer) were planted with the lianas Acacia kamerunensis (fast growing) and Loeseneriella rowlandii (slow growing) in large and small gaps (ca. 15% and 8% PAR respectively) and in the forest understorey (ca. 4% PAR). Seedling survival, growth and biomass allocation were measured. Results: Canopy openness moderated the interaction between liana and tree seedlings. The nature of the interaction was both liana and tree species specific and displayed temporal variation. Acacia competition effects were stronger in sites with greater canopy openness. In big gaps, Acacia reduced significantly the biomass of Nauclea by 32% and Khaya by about 50%. Khaya growth in leaf area was five times greater without Acacia, while Nauclea and Garcinia were not affected. Acacia was more plastic than Loeseneriella in response to the environment and the tree species. Our results show that while Loeseneriella, with lower rates of growth, did not affect seedling growth of the three species evaluated, Acacia could alter the relative success of tree species during regeneration. Conclusions: There is evidence that competitive effects by Acacia on tree regeneration through competition could modify tree species capacity to establish. Effects by lianas at the regeneration phase may have important implications for forest management. [source] Demographic and life-history correlates for Amazonian treesJOURNAL OF VEGETATION SCIENCE, Issue 6 2005Henrique E.M. Nascimento Abstract Questions: Which demographic and life-history differences are found among 95 sympatric tree species? Are there correlations among demographic parameters within this assemblage? Location: Central Amazonian rain forest. Methods: Using long-term data from 24 1,ha permanent plots, eight characteristics were estimated for each species: wood density, annual mortality rate, annual recruitment rate, mean stem diameter, maximum stem diameter, mean stem-growth rate, maximum stem-growth rate, population density. Results: An ordination analysis revealed that tree characteristics varied along two major axes of variation, the major gradient expressing light requirements and successional status, and the second gradient related to tree size. Along these gradients, four relatively discrete tree guilds could be distinguished: fast-growing pioneer species, shade-tolerant sub-canopy species, canopy trees, and emergent species. Pioneers were uncommon and most trees were canopy or emergent species, which frequently had low mortality and recruitment. Wood density was negatively associated with tree mortality, recruitment, and growth rates when all species were considered. Growth rates varied markedly among and within species, with pioneers exhibiting far faster and less variable growth rates than did the other species. Slow growth in subcanopy species relative to canopy and emergent trees was not a simple consequence of mean tree size, but apparently resulted from physiological constraints imposed by low-light and other conditions in the forest understorey. Conclusions: Trees of Amazonian rain forests could be classified with some success into four relatively distinctive guilds. However, several demographic and life-history traits, such as those that distinguish early and late successional species, probably vary along a continuum, rather than being naturally grouped into relatively discrete categories. [source] The Effect of Seed Mass and Gap Size on Seed Fate of Tropical Rain Forest Tree Species in GuyanaPLANT BIOLOGY, Issue 2 2004L. H. van Ulft Abstract: For eleven tree species, differing in seed mass, germination success (emergence success for two small-seeded species) and the causes of failure to germinate were studied in the forest understorey and in logging gaps in the tropical rain forests of Guyana. In the forest understorey, germination success increased with seed mass. However, as gap size increased the difference between smaller and larger seeded species diminished because germination success of smaller-seeded species increased slightly, while that of larger-seeded species decreased dramatically. The negative effect of gap size on germination success of larger-seeded species was caused by an increased risk of desiccation with gap size, which was a far more important seed mortality agent for larger than for smaller-seeded species. Generally, seeds of smaller-seeded species suffered more from insect predation and were removed at higher rates than larger-seeded species. On the other hand, larger-seeded species were eaten more by mammals than smaller-seeded species. It is concluded that logging can result in shifts in the species composition in the tropical rain forests of Guyana which are dominated by species with large seeds, since germination success of larger-seeded species is dramatically reduced in large logging gaps. [source] Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high lightPLANT CELL & ENVIRONMENT, Issue 3 2000Hiroyuki Muraoka ABSTRACT Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non-diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1,A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 ,mol mol,1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ,peak' of diurnal assimilation was 70% greater than that obtained before the ,peak', but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II (,F/Fm,) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ,peak'. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 ,mol m,2 s,1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ,peak', but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non-photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration. [source] Sexual dimorphism and seasonal changes of leaf gas exchange in the dioecious tree Ilex paraguariensis grown in two contrasted cultivation typesANNALS OF APPLIED BIOLOGY, Issue 2 2009M. Rakocevic Abstract Yerba maté (Ilex paraguariensis, Aquifoliaceae) is a subtropical, evergreen, dioecious, South American tree. In one preliminary study, it was observed that the functional strategy of yerba mate females, aiming to finish reproductive process, was increased transpiration relative to photosynthetic rates compared with males, on self-shaded leaves. We hypothesised that the long-term gas exchange response of males and females can evolve independently of phenological stage and cultivation type. In this spirit, the primary aim of the study was to analyse the physiological sexual dimorphism of this species, evaluating fluctuations of gas exchanges related to microclimate and phenological stages. A field study was conducted on adult plants of yerba maté cultivated in monoculture (MO) and in forest understorey (FUS), and measurements carried out in situ on microclimate and leaf gas exchange parameters. The photosynthetic photon flux density that was attained at leaf level in FUS was reduced roughly 10-fold compared with that in MO. Various leaf age populations were observed during a 2-year period at 2-month intervals and grouped into four categories: young, young-fully-expanded, fully-expanded and old. Young and young-fully-expanded leaves were the most active in photosynthesis. Leaves of female plants showed greater photosynthetic rate than those of male plants, which was expressed on all leaf age categories in MO, but only during vegetative stages previous to flowering and fruit ripening. The photosynthesis of young-fully-expanded leaves of females grown in FUS was superior to males but only during winter growth pause. The stomatal conductance differed in relation to cultivation type and leaf age but did not show the sexual differentiation. Physiological sexual dimorphism in yerba mate is shown to be plastic, responding to environmental conditions. The cost associated to the reproduction of yerba maté could be most easily met showing physiological differentiation of both sexes. A higher reproductive investment of females might be compensated for by exhibiting greater leaf photosynthesis than males that occurs in vegetative stages that precede flowering and fruit ripening. [source] Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forestJOURNAL OF ECOLOGY, Issue 2 2007JONATHAN A. MYERS Summary 1To survive in forest understoreys, seedlings must depend on carbohydrate reserves when they experience negative carbon balance imposed by occasional light reduction and tissue loss to herbivores and diseases. We present the first experimental evidence in support of this hypothesis, using seven woody neotropical species. 2We transplanted seedlings that had recently expanded their first photosynthetic cotyledon or leaf to the forest understorey (1% of full sun) and quantified initial biomass and total non-structural carbohydrate (TNC) in stems, roots and storage cotyledons. We then randomly assigned seedlings to control and two stress treatments: light reduction (0.08% of full sun for 8 weeks) and complete defoliation. 3First-year survival of control seedlings, a comparative measure of shade tolerance, differed widely among species. The two stress treatments reduced survival and relative growth rates (RGR) of all species. Shade-tolerant species were little impacted by the stress treatments, whereas the two least shade-tolerant species experienced 100% mortality. 4In all treatments, 8-week and first-year survival was positively correlated with initial TNC pool size in stems and roots. By contrast, survival was generally not correlated with initial TNC concentration in any organ, TNC pools in cotyledons, seed mass or seedling biomass. 5TNC in stems and roots, but not in cotyledons, decreased in response to light reduction and defoliation over 8 weeks. Leaf area recovery of defoliated seedlings was positively correlated with initial TNC pools in stems and roots. 6First-year survival in each treatment was negatively correlated with 0,8 week RGR of control seedlings, suggesting higher stress tolerance of species with inherently slow growth rates in shade. RGR of control seedlings from 0 to 8 weeks was negatively correlated with initial TNC pools, but not concentrations, in stems and roots. After 8 weeks, RGR was positive for all species, without clear relationships with survival or TNC. 7We conclude that carbohydrate storage in stems and roots enhances long-term survival in shade by enabling seedlings to cope with periods of biotic and abiotic stress. Carbohydrate storage is a key functional trait that can explain species differences in growth and survival that lead to species coexistence through niche assembly processes and life-history trade-offs. [source] |