Forest Tree Species (forest + tree_species)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


The Effect of Seed Mass and Gap Size on Seed Fate of Tropical Rain Forest Tree Species in Guyana

PLANT BIOLOGY, Issue 2 2004
L. H. van Ulft
Abstract: For eleven tree species, differing in seed mass, germination success (emergence success for two small-seeded species) and the causes of failure to germinate were studied in the forest understorey and in logging gaps in the tropical rain forests of Guyana. In the forest understorey, germination success increased with seed mass. However, as gap size increased the difference between smaller and larger seeded species diminished because germination success of smaller-seeded species increased slightly, while that of larger-seeded species decreased dramatically. The negative effect of gap size on germination success of larger-seeded species was caused by an increased risk of desiccation with gap size, which was a far more important seed mortality agent for larger than for smaller-seeded species. Generally, seeds of smaller-seeded species suffered more from insect predation and were removed at higher rates than larger-seeded species. On the other hand, larger-seeded species were eaten more by mammals than smaller-seeded species. It is concluded that logging can result in shifts in the species composition in the tropical rain forests of Guyana which are dominated by species with large seeds, since germination success of larger-seeded species is dramatically reduced in large logging gaps. [source]


Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches

FUNCTIONAL ECOLOGY, Issue 4 2010
Jennifer S. Powers
Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source]


Fine-scale heterogeneity in beetle assemblages under co-occurring Eucalyptus in the same subgenus

JOURNAL OF BIOGEOGRAPHY, Issue 10 2010
Philip S. Barton
Abstract Aim, Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine-scale heterogeneity in ground-dwelling beetle assemblages under co-occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location, Critically endangered grassy woodland near Canberra, south-eastern Australia. Methods, We used pitfall traps and Tullgren funnels to sample ground-dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results, Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions, Our study shows that heterogeneity in litter habitat under co-occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine-scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co-occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales. [source]


Forest succession in Kibale National Park, Uganda: implications for forest restoration and management

AFRICAN JOURNAL OF ECOLOGY, Issue 1 2003
Jeremiah S. Lwanga
Abstract Forest succession was studied in four plots in former grasslands at the Ngogo study area in Kibale National Park, Uganda. The plots were located in areas that had been protected from fire for 0.58, 25, 9 and ,30 years for plots 1, 2, 3 and 4, respectively. Species richness reflected the length of time that the plot had been protected from fire; it was highest in plot 4 and lowest in plot 1. Species density, stem density and basal area were all highest in plot 4 and lowest in plot 1. The species densities of plots 2 and 3 were not different. Similarly, plots 2 and 4 did not differ with regard to stem density or basal area. Animal seed dispersers played a vital role in the colonization of grasslands by forest tree species. Résumé On a étudié la succession forestière dans quatre plots d'anciennes prairies dans la zone de recherche de Ngogo, dans le Parc National de Kibale, en Ouganda. Ces plots étaient situés dans des endroits qui avaient été protégés du feu pendant 0, 58, 25, 9 et ± 30 ans pour les plots 1, 2, 3 et 4 respectivement. La richesse en espèces reflétait la durée pendant laquelle le plot avait été protégé du feu ; elle était maximale dans le plot 4 et minimale dans le plot 1. La densité des espèces n'était pas différente dans les plots 2 et 3. De même, les plots 2 et 4 ne différaient pas en ce qui concernait la densité des pousses ou la surface basale. Les animaux qui dispersent les semences ont joué un rôle vital dans la colonisation des prairies par les espèces d'arbres de forêts. [source]


Growth properties of 16 non-pioneer rain forest tree species differing in sapling architecture

JOURNAL OF ECOLOGY, Issue 5 2009
Masahiro Aiba
Summary 1.,Sapling architecture may be an important determinant of performance traits, such as light interception and height growth, but few studies have examined the direct relationship between sapling architecture and growth properties. To study this relationship and the potential for strategic diversification, we analysed the growth properties in saplings of 16 Bornean tree species that differ in architecture. 2.,Annual net production significantly differed amongst species and was positively correlated with total above-ground dry mass, total leaf area and crown area. In contrast, the net assimilation rate was weakly but negatively correlated with these architectural traits. The net assimilation rate was virtually independent of leaf size and specific leaf area. Relationships between sapling architecture and relative growth rate in mass were weak. 3.,The relative growth rate in height did not significantly differ amongst species, although their total dry mass, a proxy for extension cost, varied fourfold across species for a given sapling height. This is because the proportional increase in net production with total dry mass, which is based on a larger total leaf area and larger crown area, cancelled out the higher extension cost. All architectural traits, including leaf size and specific leaf area, failed to predict height growth rate. 4.,Synthesis. Relative growth rates in both mass and height were relatively independent of sapling architecture. Of the architectural traits, leaf size, specific leaf area and stem diameter were poor predictors of growth properties, even though they were considered functionally important. These results clearly reject the classic hypothesis that architectural variation leads to a trade-off between height growth and light interception, at least for the species that are under shaded conditions. However, functional variation ranging from species with high net production and low net assimilation rates (in saplings of equal height) to species with the opposite traits, which was accompanied by architectural variation in total dry mass and related size factors, may be important for the coexistence of these tree species. The possibility that small total dry mass may be advantageous in height growth under well-lit conditions should be examined in future studies. [source]


A modelling analysis of the genetic variation of phenology between tree populations

JOURNAL OF ECOLOGY, Issue 4 2000
I. Chuine
Summary 1 The phenology of temperate woody plants is commonly assumed to be locally adapted to climate. 2 However, the high gene flow expected in forest tree species, the high between year variance of thermal conditions at a given place and the high plasticity of phenology regarding temperature, lead us to hypothesize that genetic variation of phenology between populations is likely to be insignificant for many lowland tree species. 3 Using phenological models, we investigated variation in the timing of flowering between locations for four European clonal trees and between different populations of a further five species. 4 Models were also used to study the responses of the different populations to climate change by simulating transfers of each population to different locations. 5 While clinal variations can be observed in the phenological response to temperature between populations, only one species (Corylus avellana) showed significantly different responses between populations and even then only one of three populations could be separated from the others. 6 Hypothetical transfers show that the differences observed between populations depend on the thermal conditions at the location of transfer, and that these differences are less marked in warmer conditions. 7 Our results indicate that local adaptation will probably not be a serious constraint in predicting the phenological responses of temperate lowland tree species to global warming. [source]


Microsatellite DNA loci for Western Hemlock [Tsuga heterophylla (Raf.) Sarg]

MOLECULAR ECOLOGY RESOURCES, Issue 3 2002
Vindhya Amarasinghe
Abstract Polymorphic microsatellite loci were developed for Western Hemlock [Tsuga heterophylla (Raf.) Sarg], a prominent forest tree species in Western North America. Microsatellite-enriched libraries were screened for (CA)n dinucleotide repeats from which 33 positive clones were sequenced. Polymerase chain reaction (PCR) primers for 16 microsatellite loci were prepared and tested against DNA from unrelated Western Hemlock trees. The 12 most informative microsatellite loci are reported here. From four to 22 alleles per locus were observed, with an average expected heterozygousity of 0.799. [source]


Genetic parameters and QTL analysis of ,13C and ring width in maritime pine

PLANT CELL & ENVIRONMENT, Issue 8 2002
O. Brendel
Abstract Classical quantitative genetics and quantitative trait dissection analysis (QTL) approaches were used in order to investigate the genetic determinism of wood cellulose carbon isotope composition (,13C, a time integrated estimate of water use efficiency) and of diameter growth and their relationship on adult trees (15 years) of a forest tree species (maritime pine). A half diallel experimental set-up was used to (1) estimate heritabilities for ,13C and ring width and (2) to decompose the phenotypic ,13C/growth correlation into its genetic and environmental components. Considerable variation was found for ,13C (range of over 3,) and for ring width (range of over 5 mm) and significant heritabilities (narrow sense 0·17/0·19 for ,13C and ring width, respectively, 100% additivity). The significant phenotypic correlation between ,13C and ring width was not determined by the genetic component, but was attributable to environmental components. Using a genetic linkage map of a full-sib family, four significant and four suggestive QTLs were detected for ,13C, the first for ,13C in a forest tree species, as far as known to the authors. Two significant and four suggestive QTLs were found for ring width. No co-location of QTLs was found between ,13C and growth. [source]


Seasonal changes in susceptibility of Quercus suber to Botryosphaeria stevensii and Phytophthora cinnamomi

PLANT PATHOLOGY, Issue 3 2002
J. Luque
Monthly inoculations of both intact plants and excised shoots of Quercus suber with the pathogenic species Botryosphaeria stevensii and Phytophthora cinnamomi were performed to investigate seasonal changes in susceptibility of this forest tree species in relation to environmental parameters and plant water status. Infection symptoms were mainly detected on seedlings inoculated from spring to autumn (April through October) with either pathogen. Mean canker sizes also showed a seasonal pattern, the higher values being recorded in the same period as above. Lesion lengths were significantly (P < 0·001) related to environmental minimum temperature. Mean daily minimum temperatures within the range of 5,12°C clearly inhibited lesion development of P. cinnamomi, whereas B. stevensii showed a less pronounced decrease in canker expansion at the same temperature range. In excised shoots of Q. suber inoculated monthly with B. stevensii, a negative linear relationship was found between the studied range of plant relative water content (81,91%) and canker length. In contrast, the lesions caused by P. cinnamomi were not significantly (P = 0·32) related to any seasonal change in water content. Some control measures for the diseases caused by both pathogens are discussed on the basis of the seasonal changes in host susceptibility observed in this study. [source]


Testing the Home-Site Advantage in Forest Trees on Disturbed and Undisturbed Sites

RESTORATION ECOLOGY, Issue 3 2010
Eleanor K. O'Brien
Restoration of plant populations is often undertaken using seed or plants from local sources because it is assumed they will be best adapted to the prevailing conditions. However, the effect of site disturbance on local adaptation has rarely been examined. We assessed local adaptation in three southwestern Australian forest tree species (Eucalyptus marginata, Corymbia calophylla, and Allocasuarina fraseriana) using reciprocal transplant trials at disturbed and undisturbed sites. Performance of plants within the trials was assessed over 2 years. Planting location accounted for the majority of the variation in most measures of performance, although significant variation of percent emergence among source populations was also detected. In all species, percent emergence and survival of plants sourced from Darling Range populations was significantly higher than that of plants from the Swan Coastal Plain, regions of contrasting edaphic and climatic environment. Survival of E. marginata over the first 18 months and emergence of C. calophylla were both higher in local plants, providing at least weak evidence for local adaptation. Where a local advantage was observed, the relative performance of local and nonlocal seed did not vary among disturbed and undisturbed sites. Evidence for enhanced establishment from local seed in at least one species leads us to recommend that where sufficient high-quality seed supplies exist locally, these should be used in restoration. We also recommend longer-term studies to include the possibility of local adaptation becoming evident at later life history stages. [source]


Bird Assemblage and Visitation Pattern at Fruiting Elmerrillia tsiampaca (Magnoliaceae) Trees in Papua New Guinea

BIOTROPICA, Issue 2 2010
Steffen Oppel
ABSTRACT Most tropical trees produce fleshy fruits that attract frugivores that disperse their seeds. Early demography and distribution for these tree species depend on the effects of frugivores and their behavior. Anthropogenic changes that affect frugivore communities could ultimately result in changes in tree distribution and population demography. We studied the frugivore assemblage at 38 fruiting Elmerrillia tsiampaca, a rain forest canopy tree species in Papua New Guinea. Elmerrillia tsiampaca is an important resource for frugivorous birds at our study site because it produces abundant lipid-rich fruits at a time of low fruit availability. We classified avian frugivores into functional disperser groups and quantified visitation rates and behavior at trees during 56 canopy and 35 ground observation periods. We tested predictions derived from other studies of plant,frugivore interactions with this little-studied frugivore assemblage in an undisturbed rain forest. Elmerrillia tsiampaca fruits were consumed by 26 bird species, but most seeds were removed by eight species. The most important visitors (Columbidae, Paradisaeidae and Rhyticeros plicatus) were of a larger size than predicted based on diaspore size. Columbidae efficiently exploited the structurally protected fruit, which was inconsistent with other studies in New Guinea where structurally protected fruits were predominantly consumed by Paradisaeidae. Birds vulnerable to predation foraged for short time periods, consistent with the hypothesis that predator avoidance enhances seed dispersal. We identified seven functional disperser groups, indicating there is little redundancy in disperser groups among the regular and frequent visitors to this tropical rain forest tree species. [source]