Home About us Contact | |||
Forest Trees (forest + tree)
Kinds of Forest Trees Terms modified by Forest Trees Selected AbstractsPhysiological Responses of Forest Trees to Heat and DroughtPLANT BIOLOGY, Issue 5 2006H. Rennenberg Abstract: The heat wave of summer 2003 was the largest and the most persistent ever experienced in Central Europe and has fuelled concern about the effects of climate change on European ecosystems. Since forests constitute the most important European ecosystems, in this review article we assess current knowledge on the effects of heat and drought on key metabolic processes for growth and productivity of forest trees. In particular, the general consequences of heat and drought on (1) photosynthesis and respiration at the cellular and community level, and (2) on nutrient uptake, partitioning and competition for nutrients are summarized. The latter are a major sink for photosynthetic energy and, therefore, are indirectly but strongly connected to the performance of photosynthesis. In addition, the interaction of heat and drought with stress compensation mechanisms and emission of biogenic volatile organic compounds (BVOC) are discussed, since these processes are directly connected to carbon metabolism. Effects on the emission of BVOC are also included because they constitute an important feedback mechanism on ozone formation and, thus, on atmospheric pollution. As far as available, data collected during the 2003 heat wave are included and discussed. [source] Interactions between Drought and O3 Stress in Forest TreesPLANT BIOLOGY, Issue 1 2006R. Matyssek Abstract: Temperature increase and altered precipitation are facets of "Global Change", along with enhanced tropospheric ozone (O3) and CO2 levels. Both O3 and drought may curtail the probably limited capacity of "extra" carbon fixation in forest trees under a CO2 -enriched atmosphere. In view of the exceptionally dry year of 2003 in Central Europe, this mini-review highlights O3/drought interactions in biochemical and ecophysiological responses of trees. Such interactions appear to vary, depending on the genotype and factorial scenarios. If O3 perturbs stomatal regulation, tolerance to both drought and persisting O3 exposure may be weakened, although drought preceding O3 stress may "harden" against O3 impact. Stomatal closure under drought may shield trees against O3 uptake and injury, which indeed was the case in 2003. However, the trees "tuning" between O3 uptake and defence capacity is crucial in stress tolerance. Defence may be constrained due to limited carbon fixation, which results from the trade-off with O3 exclusion upon stomatal closure. Drought may cause a stronger reduction in stem growth than does ozone on an annual basis. [source] Testing the Home-Site Advantage in Forest Trees on Disturbed and Undisturbed SitesRESTORATION ECOLOGY, Issue 3 2010Eleanor K. O'Brien Restoration of plant populations is often undertaken using seed or plants from local sources because it is assumed they will be best adapted to the prevailing conditions. However, the effect of site disturbance on local adaptation has rarely been examined. We assessed local adaptation in three southwestern Australian forest tree species (Eucalyptus marginata, Corymbia calophylla, and Allocasuarina fraseriana) using reciprocal transplant trials at disturbed and undisturbed sites. Performance of plants within the trials was assessed over 2 years. Planting location accounted for the majority of the variation in most measures of performance, although significant variation of percent emergence among source populations was also detected. In all species, percent emergence and survival of plants sourced from Darling Range populations was significantly higher than that of plants from the Swan Coastal Plain, regions of contrasting edaphic and climatic environment. Survival of E. marginata over the first 18 months and emergence of C. calophylla were both higher in local plants, providing at least weak evidence for local adaptation. Where a local advantage was observed, the relative performance of local and nonlocal seed did not vary among disturbed and undisturbed sites. Evidence for enhanced establishment from local seed in at least one species leads us to recommend that where sufficient high-quality seed supplies exist locally, these should be used in restoration. We also recommend longer-term studies to include the possibility of local adaptation becoming evident at later life history stages. [source] Responses to Fire in Selected Tropical Dry Forest Trees,BIOTROPICA, Issue 5 2006Sarah M. Otterstrom ABSTRACT Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire-coping strategies among common dry forests plants: resisters (low fire-induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post-fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post-fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited. RESUMEN El incendio forestal causa perturbación frecuente en los bosques secos tropicales de Centroamérica, sin embargo se conoce poco del comportamiento de las especies nativas a ésta perturbación. Nosotros llevamos a acabo una quema experimental en un bosque seco tropical de Nicaragua occidental para evaluar el comportamiento de la flora con respecto a la sobrevivencia y reclutamiento de las especies después de la quema. Se midió todas las clases diamétricas de la vegetación leñosa antes de la quema controlada y durante 3 años consecutivos después de la quema. Seleccionamos las 15 especies más abundantes en la clase diametrica <10 dap para evaluar el porcentaje de sobrevivencia y la actividad de rebrote después de la quema. Cambios en la densidad de plántulas para las 15 especies más abundantes y para las 15 especies menos abundantes fueron analizadas utilizando el análisis de varianza de medición repetido (ANOVA). También, evaluamos cambios en la densidad de plántulas para tres especies de interés a nivel internacional con respecto a su conservación. En la flora común del bosque seco se encontró tres estrategias principales utilizadas por las especies para contender con los incendios forestales, estas fueron: resistores (baja mortalidad por el incendio), rebrotadores (rebrotamiento vigoroso), y reclutores (reclutamiento elevado pos-incendio). Mientras la sobrevivencia de especies en el bosque seco en general fue relativamente alta a la de especies de bosque húmedo tropical, las especies con menor sobrevivencia utilizaron el reclutamiento ó rebrotamiento como estrategia para persistir en la comunidad boscosa. El mecanismo de dispersión de semilla, particularmente la dispersión eólica, parece ser un factor importante en el éxito de reclutamiento después de la quema. Las quemas controladas produjeron un aumento significativo en la densidad de plántulas para dos de las especies de interés para la conservación: Guaiacum sanctum L. (Zygophyllaceae) y Swietenia humilis Zucc. (Meliaceae). Resultados de esta investigación sugieren que las especies comunes del bosque seco de Nicaragua son tolerantes al fuego. Por lo tanto, es merecido hacer más estudios de estas especies y su comportamiento ante la perturbación del fuego. [source] Phenology of Atlantic Rain Forest Trees: A Comparative Study,BIOTROPICA, Issue 4b 2000L. Patnicia C. Morellato ABSTRACT This paper describes the phenology of leaf, flower, and fruit phenology in the Atlantic rain forests of southeastern Brazil. For 17 months, we observed the phenological patterns of trees from two Atlantic forest types at four sites: premontane forest (Sites I and IV; the "typical" Atlantic rain forest) and coastal plain forest (Sites II and III). All sites experience a nonseasonal, tropical wet climate, characterized by an annual rainfall usually > 2000 mm and lacking a dry season. We tested for the occurrence (or absence) of seasonal phenological patterns within each site and compared the patterns detected among the four different forest sites using circular statistics. The expected weakly seasonal phenological patterns were not observed for these forests. Flowering and leaf flush patterns of Atlantic rain forest trees were significantly seasonal, concentrated at the beginning of the wettest season, and were significantly correlated with day length and temperature. These results stress the influence that seasonal variation in day length has on ever-wet forest tree phenology. Fruiting phenologies were aseasonal in all four forests. Flowering patterns did not differ significantly among three of the four forest sites analyzed, suggesting the occurrence of a general flowering pattern for Atlantic rain forest trees. RESUMO Este estudo descreve, pela primeira vez, a fenologia reprodutiva (flora¸ão e frutifica¸ão) e a mudan¸a foliar em floresta pluvial atlãntica do sudeste do Brasil. Durante 17 meses foi observada a fenologia das árvores de dois tipos de floresta atlãntica: a floresta atlãntica de encosta (áreas I e IV; Floresta atlãntica "típica") e floresta de planície (áreas II c III). Todas ás áreas estão sob clima não-sazonal, tropical úmido, caracterizado por precipita¸ão anual geralmente superior a 2000 mm e ausência de esta¸ão seca. Foi testada a ocorrência (ou ausência) de padrões fenológicos sazonais dentro de cada área e comparados os padrões detectados entre as quatro diferentes áreas de floresta utilizando-se da análise estatística circular. O padrão fenológico fracamente sazonal, esperado neste tipo de vegeta¸ão, não foi observado para as florestas estudadas. A flora¸ão e o brotamento foram significativamente sazonais, concentrados durante o início da esta¸ão úmida, e apresentaram correla¸ão significativa com o comprimento do dia e temperatura. Estes resultados expressam a importãncia da luz na fenologia de árvores tropicais sob clima pouco sazonal. A frutifica¸ão não apresentou padrão sazonal para todas as áreas de floresta analisadas. Os padrões de flora¸ão não diferiram significativamente entre três das quatro áreas de floresta analisadas, sugerindo a ocorrência de um padrão de flora¸ão geral para as árvores de floresta atlãntica. [source] Absence of residual effects of a defeated resistance gene in poplarFOREST PATHOLOGY, Issue 2 2003K.-S. Woo Summary In a few plant pathosystems, defeated major genes have been shown to contribute to partial resistance to disease. This hypothesis has never been tested before in a forest tree, but pathogenic variation associated with recent hybridization in poplar rust in the Pacific northwest provided an opportunity. An F2 progeny of 256 poplar clones in the field near Corvallis, Oregon, USA, has been monitored for rust severity and infection type since the advent of the new hybrid rust, Melampsora × columbiana, in the mid-1990s. All 256 clones displayed a susceptible infection type in 1997 and again in 2000, and yet variation in uredinial density (i.e. partial resistance) was still observed. To determine which clones possessed a defeated resistance gene, a greenhouse inoculation was performed with an isolate of M. medusae, one of the parents of M. × columbiana. Clones that would have been resistant to M. medusae, prior to the advent of M. × columbiana, were thus identified. The inoculation resulted in a 1 : 1 segregation (,2=0.772; p=0.38) for resistance, indicating the presence of a major gene. However, the F2 clones possessing the defeated resistance gene displayed the same level of partial resistance in the field in both 1997 and 2000 as their full siblings lacking the gene. Résumé Chez quelques pathosystèmes végétaux, il a été montré que le contournement de gènes majeurs de résistance contribue à une résistance partielle envers la maladie. Cette hypothèse n'a encore jamais été testée chez un arbre forestier, mais le changement de pouvoir pathogène associéà l'hybridation récente de la rouille du peuplier dans le nord-ouest des USA en a fourni l'occasion. Une descendance F2 de 256 clones de peuplier a été suivie au champ près de Corvallis, Oregon, USA, pour la gravité de la rouille et le type d'infection, depuis l'apparition du nouvel hybride Melampsora x columbiana, dans les années 1990. Tous les 256 clones se sont montrés sensibles en 1997 et à nouveau en 2000, et une variation dans la densité des urédies (résistance partielle) a aussi été observée. Pour déterminer quels clones présentaient une résistance contournée, des inoculations ont été réalisées en serre avec un isolat de Melampsora medusae originaire du Kentucky. Des clones qui étaient résistants àM. medusae avant l'apparition de M. x columbiana ont ainsi été identifiés. Les inoculations ont abouti à une ségrégation 1 :1 (,2 = 0,772; P = 0,38) pour la résistance, ce qui indique la présence d'un gène majeur. Cependant, les clones F2 possédant le gène de résistance contourné montraient le même niveau de résistance partielle au champ en 1997 et 2000 que leurs plein-frères qui n'avaient pas ce gène. Zusammenfassung Für einige Pflanzen-Pathosysteme wurde gezeigt, dass unwirksam gewordene Haupt-Resistenzgene immer noch zu einer teilweisen Resistenz beitragen. Für Waldbäume wurde diese Hypothese bisher nie überprüft. Dies wurde jetzt im pazifischen Nordwesten möglich, wo der Pappelrost nach einem rezenten Hybridisierungsereignis stark variierte. An den F2-Nachkommenschaften von 256 Pappelklonen, die unter Freilandbedingungen in der Nähe von Corvallis, Oregon, USA wuchsen, wurde nach dem Auftreten des neuen Hybridrostes (Melampsora × columbiana) ab ca. 1990 die Krankheitsintensität und der Infektionstyp registriert. Alle 256 Klone zeigten einen anfälligen Infektionstyp im Jahre 1997 und dann wieder im Jahre 2000. Dabei wurde eine Variation in der Urediendichte (d.h. partielle Resistenz) beobachtet. Um zu bestimmen, welche Klone ein unwirksam gewordenes Resistenzgen besitzen, wurden Inokulationen im Gewächshaus mit einem Isolat von M. medusae, einem Elter von M. × columbiana, durchgeführt. Damit wurden Klone identifiziert, die vor dem Auftreten von M. × columbiana gegen M. medusae resistent waren. Der Infektionsversuch führte zu einer 1:1 Segregation (,2=0,772; P=0,38) für die Resistenz, was auf das Vorliegen eines Hauptgens hinweist. Die F2-Klone, welche dieses überwundene Resistenzgen besitzen, zeigten jedoch unter Feldbedingungen in den Jahren 1997 und 2000 den gleichen Grad einer Teilresistenz wie ihre Vollgeschwister, welchen dieses Gen fehlt. [source] Raised and sunken bed technique for agroforestry on alkali soils of northwest IndiaLAND DEGRADATION AND DEVELOPMENT, Issue 2 2001J. C. Dagar Abstract Many forest tree and fruit species can be raised on highly alkali soil (pH,>,10) but some of them such as pomegranate (Punica granatum) are unable to tolerate water stagnation. To avoid water stagnation problems during the monsoon the raised and sunken bed technique has been found suitable for agroforestry practices on highly alkali soil. One fruit-yielding pomegranate and one oil-yielding salvadora (Salvadora persica) plantation species were successfully grown on raised bunds to avoid water stagnation and rice,wheat and berseem,kallar grass rotation were grown on sunken-beds constructed for the purpose. The experiment was initiated in 1996 and the above two crop rotations were followed for two consecutive years starting in the summer season. Results of these experiments have also shown that good growth of plantations, on an average 4·3 to 4·9,t ha,1 rice (salt tolerant var. CSR-10) and 1·2 to 1·4,t ha,1 wheat (KRL 1,4), were obtained in sunken beds. In another rotation 21·3 to 36.8,t ha,1 fresh forage of kallar grass (Leptochloa fusca) and 44·9 to 47·8,t ha,1 fresh forage of berseem (Trifolium alexandrium) were obtained. After two years of the experiment, soil amelioration in terms of reduction in soil pH was significant. The effect of plantation in reducing soil pH showed that the pomegranate and salvadora both helped in reduction of soil pH, but the latter due to its well-developed lateral root system was more efficient in lowering the soil pH even at lower depths. The reduction in soil pH by the berseem,kallar grass rotation was better than under rice,wheat rotation. Copyright © 2001 John Wiley & Sons, Ltd. [source] Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest treeMOLECULAR ECOLOGY, Issue 8 2010DULCINEIA DE CARVALHO Abstract Adaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L., a widespread forest tree, using mapped molecular genetic markers. We detected the genetic signature of postglacial admixture between a Western and an Eastern lineage of P. tremula in Scandinavia, an area suspected to represent a zone of postglacial contact for many species of animals and plants. Stringent divergence-based neutrality tests provided clear indications for locally varying selection at the European scale. Six of 12 polymorphisms under selection were located less than 1 kb away from the nearest gene predicted by the Populus trichocarpa genome sequence. Few of these loci exhibited a signature of ,selective sweeps' in diversity-based tests, which is to be expected if adaptation occurs primarily from standing variation. In Scandinavia, admixture explained genomic patterns of ancestry and the nature of clinal variation and strength of selection for bud set, a phenological trait of great adaptive significance in temperate trees, measured in a common garden trial. Our data provide a hitherto missing direct link between past range shifts because of climatic oscillations, and levels of standing variation currently available for selection and adaptation in a terrestrial foundation species. [source] Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton)MOLECULAR ECOLOGY, Issue 14 2006SANTIAGO C. GONZÁLEZ-MARTÍNEZ Abstract Understanding population-scale processes that affect allele frequency changes across generations is a long-standing interest in genetic, ecological and evolutionary research. In particular, individual differences in female reproductive success and the spatial scale of gene flow considerably affect evolutionary change and patterns of local selection. In this study, a recently developed maximum-likelihood (ML) method based on established offspring, the Seedling Neighbourhood Model, was applied and exponentially shaped dispersal kernels were fitted to both genetic and ecological data in a widespread Mediterranean pine, Pinus pinaster Aiton. The distribution of female reproductive success in P. pinaster was very skewed (about 10% of trees mothered 50% of offspring) and significant positive female selection gradients for diameter (, = 0.7293) and cone crop (, = 0.4524) were found. The selective advantage of offspring mothered by bigger trees could be due to better-quality seeds. These seeds may show more resilience to severe summer droughts and microsite variation related to water and nutrient availability. Both approaches, ecological and of parentage, consistently showed a long-distance dispersal component in saplings that was not found in dispersal kernels based on seed shadows, highlighting the importance of Janzen-Connell effects and microenvironmental variation for survival at early stages of establishment in this Mediterranean key forest tree. [source] Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest treeMOLECULAR ECOLOGY, Issue 9 2000C. Dutech Abstract The chloroplast genome has been widely used to describe genetic diversity in plant species. Its maternal inheritance in numerous angiosperm species and low mutation rate are suitable characters when inferring historical events such as possible recolonization routes. Here we have studied chloroplast DNA variation using PCR,RFLP (polymerase chain reaction,restriction fragment length polymorphism) with seven pairs of primers and four restriction enzymes in 14 populations of Vouacapoua americana (Caesalpiniaceae) a neotropical tree sampled throughout French Guiana. Population diversity (Hs), total gene diversity (Ht) and differentiation among populations (GST) were estimated using Nei's method as 0.09, 0.87 and 0.89, respectively. This is consistent with the limited gene flow associated with synzoochory in this species. The genetic structure observed in the north of French Guiana suggests that historical events such as contractions and recent recolonizations have had a large impact on the distribution of genetic diversity in this species. [source] Microsatellite markers for Ceiba pentandra (Bombacaceae), an endangered tree species of the Amazon forestMOLECULAR ECOLOGY RESOURCES, Issue 2 2003R. P. V. Brondani Abstract From a genomic library enriched for AG/TC repeats, eight polymorphic microsatellite markers were developed for Ceiba pentandra, a pan-tropical forest tree. Polymorphism was evaluated using a panel of 74 adult trees. Using automated fluorescence detection, a total of 112 alleles was detected with an average of 14 alleles per locus. All microsatellite loci showed very high levels of genetic information content, with expected heterozygosity ranging from 0.814 to 0.895. These microsatellite markers represent a powerful tool to investigate refined questions of mating systems, gene flow, family structure and population dynamics in natural populations of C. pentandra. [source] Reproduction in Wild Populations of the Threatened Tree Macadamia tetraphylla: Interpopulation Pollen Enriches Fecundity in a Declining SpeciesBIOTROPICA, Issue 3 2009Philip C. Pisanu ABSTRACT Macadamia tetraphylla is a subtropical rain forest tree from fragmented lowlands in eastern Australia. Owing to habitat loss and fragmentation, this commercially important species is vulnerable to extinction. Breeding system and fecundity were investigated in nine populations incorporating three habitat types (moderately disturbed, highly disturbed, and intact) to determine if seed set, seed weight, and genetic diversity are compromised by disturbance. Breeding success was also tested using pollen donors from distant (30,100 km), local (2,3 km), neighbor (10,20 m), and near-neighbor (< 10 m) sources. Macadamia tetraphylla is weakly self-compatible but incapable of automatic self-pollination. Across populations, seed to flower ratios were always < 0.1 percent in open-pollinated trees and trees from moderately disturbed habitats had the highest fruit production. Outcross pollen produced more seed per raceme than open-pollinated or self-pollination treatments. Seed set and seed weights were positively influenced by pollen source with local pollen and distant pollen effecting more or heavier seeds. Germination rates and genetic diversity did not vary significantly in seedlings from different pollen sources. Results suggest a pollen source from at least a 2 km distance is an optimal outbreeding distance; however, many wild populations do not have conspecifics at optimal distances owing to habitat fragmentation. Highly disturbed populations are producing seed but the longevity of these sites is threatened by weed invasions. We conclude that small populations in degraded habitats that are at risk of being overlooked should not be ignored but should be a focus for restoration efforts as they are a valuable asset for the conservation of M. tetraphylla. [source] The Role of Cloud Combing and Shading by Isolated Trees in the Succession from Maquis to Rain Forest in New Caledonia1BIOTROPICA, Issue 2 2002L. S. Rigg ABSTRACT This study examined the role of shading and cloud combing of moisture by scattered trees of the emergent conifer Araucaria laubenfelsii (Corbass.) in montane shrubland-maquis at Mont Do, New Caledonia, in facilitating the succession from shrubland to rain forest. Water collection experiments showed that these trees combed significant amounts of water from low clouds on days when no rainfall was recorded and deposited this moisture on the ground beneath the tree canopy. Analysis of photosystem II function in A. laubenfelsii and five other plant species using fluorometry revealed much lower photosystem stress in plants beneath scattered A. laubenfelsii than for individuals exposed to full sunlight in the open maquis. Transition matrix analyses of vegetation change based on "the most likely recruit to succeed" indicated that the transition from maquis to forest was markedly faster when emergent trees of A. laubenfelsii acted as nuclei for forest species invasion of die maquis. On the basis of these lines of evidence, it is argued that increased moisture and shading supplied to the area directly below the crown of isolated A. laubenfelsii trees in the maquis facilitates the establishment of both conifer seedlings and other rain forest tree and shrub species. In the absence of fire, rain forest can reestablish through spread in two ways: first, by expansion from remnant patches, and second, from coalescence of small rain forest patches formed around individual trees of A. laubenfelsii. [source] ADAPTIVE POPULATION DIFFERENTIATION IN PHENOLOGY ACROSS A LATITUDINAL GRADIENT IN EUROPEAN ASPEN (POPULUS TREMULA, L.): A COMPARISON OF NEUTRAL MARKERS, CANDIDATE GENES AND PHENOTYPIC TRAITSEVOLUTION, Issue 12 2007David Hall A correct timing of growth cessation and dormancy induction represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees (Rehfeldt et al. 1999; Horvath et al. 2003; Howe et al. 2003). We have studied the deciduous tree European Aspen (Populus tremula) across a latitudinal gradient and compared genetic differentiation in phenology traits with molecular markers. Trees from 12 different areas covering 10 latitudinal degrees were cloned and planted in two common gardens. Several phenology traits showed strong genetic differentiation and clinal variation across the latitudinal gradient, with QST values generally exceeding 0.5. This is in stark contrast to genetic differentiation at several classes of genetic markers (18 neutral SSRs, 7 SSRs located close to phenology candidate genes and 50 SNPs from five phenology candidate genes) that all showed FST values around 0.015. We thus find strong evidence for adaptive divergence in phenology traits across the latitudinal gradient. However, the strong population structure seen at the quantitative traits is not reflected in underlying candidate genes. This result fit theoretical expectations that suggest that genetic differentiation at candidate loci is better described by FST at neutral loci rather than by QST at the quantitative traits themselves. [source] Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest treesFUNCTIONAL ECOLOGY, Issue 4 2007T. J. BRODRIBB Summary 1Recent work on the hydraulic conductance of leaves suggests that maximum photosynthetic performance of a leaf is defined largely by its plumbing. Pursuing this idea, we tested how the diurnal course of gas exchange of trees in a dry tropical forest was affected by artificially depressing the hydraulic conductance of leaves (Kleaf). 2Individual leaves from four tropical tree species were exposed to a brief episode of forced evaporation by blowing warm air over leaves in situ. Despite humid soil and atmospheric conditions, this caused leaf water potential (,leaf) to fall sufficiently to induce a 50,74% drop in Kleaf. 3Two of the species sampled proved highly sensitive to artificially depressed Kleaf, leading to a marked and sustained decline in the instantaneous rate of CO2 uptake, stomatal conductance and transpiration. Leaves of these species showed a depression of hydraulic and photosynthetic capacity in response to the ,blow-dry' treatment similar to that observed when major veins in the leaf were severed. 4By contrast, the other two species sampled were relatively insensitive to Kleaf manipulation; photosynthetic rates were indistinguishable from control (untreated) leaves 4 h after treatment. These insensitive species demonstrate a linear decline of Kleaf with ,leaf, while Kleaf in the two sensitive species falls precipitously at a critical water deficit. 5We propose that a sigmoidal Kleaf vulnerability enables a high diurnal yield of CO2 at the cost of exposing leaves to the possibility of xylem cavitation. Linear Kleaf vulnerability leads to a relatively lower CO2 yield, while providing better protection against cavitation. [source] Comparative fire ecology of tropical savanna and forest treesFUNCTIONAL ECOLOGY, Issue 6 2003William A. Hoffmann Summary 1Fire is important in the dynamics of savanna,forest boundaries, often maintaining a balance between forest advance and retreat. 2We performed a comparative ecological study to understand how savanna and forest species differ in traits related to fire tolerance. We compared bark thickness, root and stem carbohydrates, and height of reproductive individuals within 10 congeneric pairs, each containing one savanna and one forest species. 3Bark thickness of savanna species averaged nearly three times that of forest species, thereby reducing the risk of stem death during fire. The allometric relationship between bark thickness and stem diameter differed between these two tree types, with forest species tending to have a larger allometric coefficient. 4The height of reproductive individuals of forest species averaged twice that of congeneric savanna species. This should increase the time necessary for forest species to reach reproductive size, thereby reducing their capacity to reach maturity in the time between consecutive fires. 5There was no difference in total non-structural carbohydrate content of stems or roots between savanna and forest species, though greater allocation to total root biomass by savanna species probably confers greater capacity to resprout following fire. 6These differences in fire-related traits may largely explain the greater capacity of savanna species to persist in the savanna environment. [source] The Trees in CompetitionGERMAN RESEARCH, Issue 2 2005Rainer Matyssek Prof. Dr. One of the decisive factors for the survival of forest trees is how well they can compete against their tree neighbours [source] Water savings in mature deciduous forest trees under elevated CO2GLOBAL CHANGE BIOLOGY, Issue 12 2007SEBASTIAN LEUZINGER Abstract Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest-trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)-sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2 -treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high-CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2 -treated trees take advantage from initial water savings. High-resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2 -treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad-leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2. [source] Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposureGLOBAL CHANGE BIOLOGY, Issue 5 2007SARI KONTUNEN-SOPPELA Abstract Current and future ozone concentrations have the potential to reduce plant growth and increase carbon demand for defence and repair processes, which may result in reduced carbon sink strength of forest trees in long-term. Still, there is limited understanding regarding the alterations in plant metabolism and variation in ozone tolerance among tree species and genotypes. Therefore, this paper aims to study changes in birch leaf metabolome due to long-term realistic ozone stress and to relate these shifts in the metabolism with growth responses. Two European white birch (Betula pendula Roth) genotypes showing different ozone sensitivity were growing under 1.4,1.7 × ambient ozone in open-field conditions in Central Finland. After seven growing seasons, the trees were analysed for changes in leaf metabolite profiling, based on 339 low molecular weight compounds (including phenolics, polar and lipophilic compounds, and pigments) and related whole-tree growth responses. Genotype caused most of the variance of metabolite concentrations, while ozone concentration was the second principal component explaining the metabolome profiling. The main ozone caused changes included increases in quercetin-phenolic compounds and compounds related to leaf cuticular wax layer, whereas several compounds related to carbohydrate metabolism and function of chloroplast membranes and pigments (such as chlorophyll-related phytol derivatives) were decreasing. Some candidate compounds such as surface wax-related squalene, 1-dotriacontanol, and dotriacontane, providing growth-related tolerance against ozone were demonstrated. This study indicated that current growth-based ozone risk assessment methods are inadequate, because they ignore ecophysiological impacts due to alterations in leaf chemistry. [source] Leaf litter nitrogen concentration as related to climatic factors in Eurasian forestsGLOBAL ECOLOGY, Issue 5 2006Chunjiang Liu ABSTRACT Aim, The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus, etc.). Location, The review was conducted using data from studies across the Eurasian continent. Methods, Leaf litter N concentration was compiled from 204 sets of published data (81 sets from coniferous and 123 from broadleaf forests in Eurasia). We explored the relationships between leaf litter N concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2 -fixing species were excluded from the analysis. Results, Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous, evergreen and the genus Pinus. There were highly significant linear relationships between ln(N) and Temp and Precip (P < 0.001) for all available data combined, as well as for coniferous trees, broadleaf trees, deciduous trees, evergreen trees and Pinus separately. With both Temp and Precip as independent variables in multiple regression equations, the adjusted coefficient of determination () was evidently higher than in simple regressions with either Temp or Precip as independent variable. Standardized regression coefficients showed that Temp had a larger impact than Precip on litter N concentration for all groups except evergreens. The impact of temperature was particularly strong for Pinus. Conclusions, The relationship between leaf litter N concentration and temperature and precipitation can be well described with simple or multiple linear regression equations for forests over Eurasia. In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale. [source] Lichen acclimatization on retention trees: a conservation physiology lessonJOURNAL OF APPLIED ECOLOGY, Issue 4 2009Kadi Jairus Summary 1.,Green-tree retention (GTR) has been suggested as a means to effectively support epiphytic lichen species in managed forests, given the low lichen mortality on retention trees in the short term. However, a long-term perspective requires a physiological understanding of lichen responses to logging. This study compares anatomical, morphological and physiological traits of lichens on retention trees and on intact forest trees. 2.,Thalli of nine taxa (Buellia griseovirens, Cladonia digitata, Hypogymnia physodes, Lecanora allophana, Lecanora pulicaris, Lepraria spp., Peltigera praetextata, Pertusaria amara and Phlyctis argena) were sampled from birch Betula spp. and aspen Populus tremula in GTR cuts, where they had previously been reported to survive well, and in adjacent managed forests. In the laboratory, chlorophyll fluorescence parameter Fv/Fm, thickness of the upper cortex, photobiont to mycobiont ratio and (in Lecanora species) the relative area of the apothecia were measured. 3.,All the lichen samples collected from GTR cuts appeared alive, but their Fv/Fm was significantly lower, relative areas of the apothecia were larger and the upper cortices of thalli were thicker compared with the samples from adjacent forests. No difference in photobiont to mycobiont ratio was found. These patterns were broadly consistent among species, indicating a common mechanism: while suffering from photoinhibition, the lichens had acclimatized to the open conditions and increased their investment to sexual reproduction in a few years. 4.,Synthesis and applications. The study highlights the value of a morpho-physiological framework for conservation management by pointing out that, in GTR areas, lichen survival is high-irradiation limited and heavily dependent on phenotypic plasticity. A thin upper cortex may be a common feature of the most sensitive species. To sustain epiphyte populations in managed forests, precautionary harvesting strategies (gradual felling; group-retention; extended rotations) should be preferred and large-enough populations should be preserved, even though short-term studies suggest a high survival of lichens in cut areas. [source] Restoring tropical diversity: beating the time tax on species lossJOURNAL OF APPLIED ECOLOGY, Issue 3 2003Cristina Martínez-Garza Summary 1Fragmentation of tropical forest is accelerating at the same time that already cleared land reverts to secondary growth. Fragments inexorably lose deep-forest species to local extinction while embedded in low-diversity stands of early successional pioneer trees. 2Pasture matrices undergoing passive secondary succession become a ,pioneer desert' from the vantage of remnant immigration, imposing a ,time tax' of loss of deep-forest plants from forest fragments. However, if seeds of deep-forest trees find pastures, or seedlings are planted there, many will prosper. 3Bypassing early domination of pioneer trees in regenerating matrices, or enriching matrices with animal-dispersed forest trees, may stem the loss of species from forest fragments and accelerate succession far from the edges of old forest. 4Synthesis and applications. Planting disperser-limited trees that establish in open ground may bypass 30,70 years of species attrition in isolated remnants by attracting animals that encourage normal processes of seed dispersal into and out of the fragments. Development of criteria for selection of persistent, reasonably rapidly growing, animal-dispersed species that are mixed with planted or naturally arriving pioneers will be an important component of enrichment planting. [source] Anthropogenic disturbance and the formation of oak savanna in central Kentucky, USAJOURNAL OF BIOGEOGRAPHY, Issue 5 2008Ryan W. McEwan Abstract Aim, To deepen understanding of the factors that influenced the formation of oak savanna in central Kentucky, USA. Particular attention was focused on the link between historical disturbance and the formation of savanna ecosystem structure. Location, Central Kentucky, USA. Methods, We used dendrochronological analysis of tree-ring samples to understand the historical growth environment of remnant savanna stems. We used release detection and branch-establishment dates to evaluate changes in tree growth and the establishment of savanna physiognomy. We contrasted our growth chronology with reference chronologies for regional tree growth, climate and human population dynamics. Results, Trees growing in Kentucky Inner Bluegrass Region (IBR) savanna remnants exhibited a period of suppression, extending from the establishment date of the tree to release events that occurred c. 1800. This release resulted in a tripling of the annual radial growth rate from levels typical of oaks suppressed under a forest canopy (< 1 mm year,1) to levels typical of open-grown stems (3 mm year,1). The growth releases in savanna trees coincided with low branch establishment. Over the release period, climatic conditions remained relatively constant and growth in regional forest trees was even; however, the growth increase in savanna stems was strongly correlated with a marked increase in Euro-American population density in the region. Main conclusions, Our data suggest that trees growing in savanna remnants originated in the understorey of a closed canopy forest. We hypothesize that Euro-American land clearing to create pasturelands released these trees from light competition and resulted in the savanna physiognomy that is apparent in remnant stands in the IBR. Although our data suggest that savanna trees originated in a forest understorey, this system structure itself may have been a result of an unprecedented lack of Native American activity in the region due to population loss associated with pandemics brought to North America by Euro-Americans. We present a hypothetical model that links human population dynamics, land-use activities and ecosystem structure. Our model focuses on the following three land-use eras: Native American habitation/utilization; land abandonment; and Euro-American land clearance. Ecological understanding of historical dynamics in other ecosystems of eastern North America may be enhanced through recognition of these eras. [source] Survey of fungi on some red and white mangrove forest trees in Rivers State, NigeriaAFRICAN JOURNAL OF ECOLOGY, Issue 3 2010N.H. Ukoima No abstract is available for this article. [source] Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals varyJOURNAL OF ECOLOGY, Issue 6 2004SIMON L. LEWIS Summary 1Mathematical proofs show that rate estimates, for example of mortality and recruitment, will decrease with increasing census interval when obtained from censuses of non-homogeneous populations. This census interval effect could be confounding or perhaps even driving conclusions from comparative studies involving such rate estimates. 2We quantify this artefact for tropical forest trees, develop correction methods and re-assess some previously published conclusions about forest dynamics. 3Mortality rates of > 50 species at each of seven sites in Africa, Latin America, Asia and Australia were used as subpopulations to simulate stand-level mortality rates in a heterogeneous population when census intervals varied: all sites showed decreasing stand mortality rates with increasing census interval length. 4Stand-level mortality rates from 14 multicensus long-term forest plots from Africa, Latin America, Asia and Australia also showed that, on average, mortality rates decreased with increasing census interval length. 5Mortality, recruitment or turnover rates with differing census interval lengths can be compared using the mean rate of decline from the 14 long-term plots to standardize estimates to a common census length using ,corr = , × t0.08, where , is the rate and t is time between censuses in years. This simple general correction should reduce the bias associated with census interval variation, where it is unavoidable. 6Re-analysis of published results shows that the pan-tropical increase in stem turnover rates over the late 20th century cannot be attributed to combining data with differing census intervals. In addition, after correction, Old World tropical forests do not have significantly lower turnover rates than New World sites, as previously reported. Our pan-tropical best estimate adjusted stem turnover rate is 1.81 ± 0.16% a,1 (mean ± 95% CI, n = 65). 7As differing census intervals affect comparisons of mortality, recruitment and turnover rates, and can lead to erroneous conclusions, standardized field methods, the calculation of local correction factors at sites where adequate data are available, or the use of our general standardizing formula to take account of sample intervals, are to be recommended. [source] Ecological aspects of seed desiccation sensitivityJOURNAL OF ECOLOGY, Issue 2 2003John C. Tweddle Summary 1The ability of seeds to survive desiccation is an important functional trait and is an integral part of plant regeneration ecology. Despite this, the topic has received relatively little attention from ecologists. In this study, we examine the relationships between seed desiccation tolerance and two important aspects of plant regeneration ecology: habitat and dormancy. This is done by comparative analysis of a data set of 886 tree and shrub species from 93 families. 2The proportion of species displaying desiccation sensitive seeds declines as the habitat becomes drier, and possibly also cooler, although the latter observation requires cautious interpretation. Desiccation sensitivity is most common in moist, relatively aseasonal vegetation zones, but is infrequent in, though not absent from arid and highly seasonal habitats. 3The highest frequency of desiccation sensitivity occurs in non-pioneer evergreen rain forest trees, although 48% of the species examined have desiccation tolerant seeds. In contrast, all pioneer taxa within the data set have drying tolerant seeds. 4Desiccation sensitivity is more frequent in seeds that are non-dormant on shedding (c. 31%), than dormant (c. 9%). Highest frequencies of drying tolerance occur in seeds with physical or combinational dormancy, at 99% and 100%, respectively. 5Although there is an association between non-dormancy and desiccation sensitivity in both tropical and temperate zones, the relationship does not appear to be causal. 6Working from the hypothesis that seed desiccation sensitivity represents a derived state in extant species, we use the results to investigate and discuss possible ecological trade-offs and associated fitness advantages. These may explain the hypothesized repeated loss of this trait. The frequent association between large seed size and desiccation sensitivity is also considered. [source] Carbon limitation in treesJOURNAL OF ECOLOGY, Issue 1 2003Christian Körner Summary 1The ongoing enrichment of the atmosphere with CO2 raises the question of whether growth of forest trees, which represent close to 90% of the global biomass carbon, is still carbon limited at current concentrations of close to 370 p.p.m. As photosynthesis of C3 plants is not CO2 -saturated at such concentrations, enhanced ,source activity' of leaves could stimulate ,sink activity' (i.e. growth) of plants, provided other resources and developmental controls permit. I explore current levels of non-structural carbon in trees in natural forests in order to estimate the potential for a carbon-driven stimulation of growth. 2The concentration of non-structural carbohydrates (NSC) in tree tissues is considered a measure of carbon shortage or surplus for growth. A periodic reduction of NSC pools indicates either that carbon demand exceeds con-current supply, or that both source and sink activity are low. A steady, very high NSC concentration is likely to indicate that photosynthesis fully meets, or even exeeds, that needed for growth (surplus assimilates accumulate). 3The analysis presented here considers data for mature trees in four climatic zones: the high elevation treeline (in Mexico, the Alps and Northern Sweden), a temperate lowland forest of central Europe, Mediterranean sclerophyllous woodland and a semideciduous tropical forest in Panama. 4In all four climatic regions, periods of reduced or zero growth show maximum C-loading of trees (source activity exceeding demand), except for dry midsummer in the Mediterranean. NSC pools are generally high throughout the year, and are not significantly affected by mass fruiting episodes. 5It is concluded that, irrespective of the reason for its periodic cessation, growth does not seem to be limited by carbon supply. Instead, in all the cases examined, sink activity and its direct control by the environment or developmental constraints, restricts biomass production of trees under current ambient CO2 concentrations. 6The current carbohydrate charging of mature wild trees from the tropics to the cold limit of tree growth suggests that little (if any) leeway exists for further CO2 -fertilization effects on growth. [source] Fungal specificity bottlenecks during orchid germination and developmentMOLECULAR ECOLOGY, Issue 16 2008MARTIN I. BIDARTONDO Abstract Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of ,dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia, the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens, the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle. [source] Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscapeMOLECULAR ECOLOGY, Issue 8 2008THOR R. HANSON Abstract In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion. [source] Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leavesNEW PHYTOLOGIST, Issue 1 2005Mari Pihlatie Summary ,,Nitrous oxide (N2O) emission estimates from forest ecosystems are based currently on emission measurements using soil enclosures. Such enclosures exclude emissions via tall plants and trees and may therefore underestimate the whole-ecosystem N2O emissions. ,,Here, we measured plant-mediated N2O emissions from the leaves of potted beech (Fagus sylvatica) seedlings after fertilizing the soil with 15N-labelled ammonium nitrate (15NH415NO3), and after exposing the roots to elevated concentrations of N2O. ,,Ammonium nitrate fertilization induced N2O + 15N2O emissions from beech leaves. Likewise, the foliage emitted N2O after beech roots were exposed to elevated concentrations of N2O. The average N2O emissions from the fertilization and the root exposure experiments were 0.4 and 2.0 µg N m,2 leaf area h,1, respectively. Higher than ambient atmospheric concentrations of N2O in the leaves of the forest trees indicate a potential for canopy N2O emissions in the forest. ,,Our experiments demonstrate the existence of a previously overlooked pathway of N2O to the atmosphere in forest ecosystems, and bring about a need to investigate the magnitude of this phenomenon at larger scales. [source] |