Home About us Contact | |||
Forest Line (forest + line)
Selected AbstractsShifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming?ECOGRAPHY, Issue 2 2007Snorre B. Hagen Climatic change is expected to affect the extent and severity of geometrid moth outbreaks, a major disturbance factor in sub-arctic birch forests. Previous studies have reported that the two geometrid species involved, autumnal moth and winter moth, differ in their temperature requirements and, consequently, in their altitudinal and latitudinal distribution patterns. In this study, we document the altitudinal distribution of winter moth outbreaks in a large coastal area in northern Norway. We show that, in the present winter moth outbreak, defoliated birch stands were seen as distinct zones with a rather constant width in the uppermost part of the forest and where the upper limit coincided with the forest line. The outbreak zone closely followed the spatially variable forest line as an undulating belt, although some of the variation in outbreak zone width was also related to variation in topographical variables, such as distance from the coast, forest line altitude, and slope of the terrain. A distinct outbreak zone at the altitudinal forest line is the typical picture that has been depicted in more qualitative historical records on previous outbreaks of autumnal moth rather than winter moth. We suggest that the recent documented climate warming in this region may have induced a shift in distribution of the winter moth both relative to topography and geography. Further investigation is, however, required to substantiate these suspicions. [source] Climate change-driven forest fires marginalize the impact of ice cap wasting on KilimanjaroGLOBAL CHANGE BIOLOGY, Issue 7 2005Andreas Hemp Abstract The disappearing glaciers of Kilimanjaro are attracting broad interest. Less conspicuous but ecologically far more significant is the associated increase of frequency and intensity of fires on the slopes of Kilimanjaro, which leads to a downward shift of the upper forest line by several hundred meters as a result of a drier (warmer) climate since the last century. In contrast to common belief, global warming does not necessarily cause upward migration of plants and animals. Here, it is shown that on Kilimanjaro the opposite trend is under way, with consequences more harmful than those due to the loss of the showy ice cap of Africa's highest mountain. [source] Climate change and its impact on the forests of KilimanjaroAFRICAN JOURNAL OF ECOLOGY, Issue 2009Andreas Hemp Abstract Cloud forests are of great importance in the hydrological functioning of watersheds in subhumid East Africa. However, the montane forests of Mt. Kilimanjaro are heavily threatened by global change impacts. Based on an evaluation of over 1500 vegetation plots and interpretation of satellite imagery from 1976 and 2000, land-cover changes on Kilimanjaro were evaluated and their impact on the water balance estimated. While the vanishing glaciers of Kilimanjaro attract broad interest, the associated increase of frequency and intensity of fires on the slopes of Kilimanjaro is less conspicuous but ecologically far more significant. These climate change-induced fires have lead to changes in species composition and structure of the forests and to a downward shift of the upper forest line by several hundred metres. During the last 70 years, Kilimanjaro has lost nearly one-third of its forest cover, in the upper areas caused by fire, on the lower forest border mainly caused by clearing. The loss of 150 km2 of cloud forest , the most effective source in the upper montane and subalpine fog interception zone , caused by fire during the last three decades means a considerable reduction in water yield. In contrast to common belief, global warming does not necessarily cause upward migration of plants and animals. On Kilimanjaro the opposite trend is under way, with consequences more harmful than those due to the loss of the showy ice cap of Africa's highest mountain. [source] Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USAJOURNAL OF VEGETATION SCIENCE, Issue 1 2009Kirk M. Stueve Abstract Questions: Does tree establishment: (1) occur at a treeline depressed by fire, (2) cause the forest line to ascend upslope, and/or (3) alter landscape heterogeneity? (4) What abiotic and biotic local site conditions are most important in structuring establishment patterns? (5) Does the abiotic setting become more important with increasing upslope distance from the forest line? Location: Western slopes of Mount Rainier, USA. Methods: We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables. Results: Considerable establishment after 1970 caused forest line elevation to increase over 150 m in specific locations. Landscape heterogeneity increased with distance from the 1970 forest line. At a broad spatial context, we found establishment was most common near existing trees (0-50 m) and at low elevations (1250-1350 m). Slope aspect (W, NW, N, NE, and E), slope angle (40-60°), and other abiotic factors emerged as important predictors of establishment with increasing upslope distance from the forest line to restricted spatial extents. Conclusions: Favorable climatic conditions likely triggered widespread tree establishment. Readily available seed probably enhanced establishment rates near sexually mature trees, particularly in the less stressful environment at low elevations. The mass effect of nearly ubiquitous establishment in these areas may have obscured the importance of the abiotic setting to restricted spatial extents. Topographic variability apparently produced favorable sites that facilitated opportunistic establishment with increasing upslope distance from the forest line, thereby enabling additional trees to invade the alpine tundra. [source] |