Forest Harvesting (forest + harvesting)

Distribution by Scientific Domains


Selected Abstracts


Analysis of suspended sediment yields after low impact forest harvesting

HYDROLOGICAL PROCESSES, Issue 26 2007
Norifumi Hotta
Abstract Disturbances to forest catchments have profound effects on the environment of headwater streams and have an impact on suspended sediment (SS) management. Forest harvesting is a dominant factor in increasing SS yields. Road construction, skidder activity and ploughing associated with harvesting cause serious soil disturbance that results in SS increases. However, few studies have shown whether harvesting itself increases SS yields. This study examined how harvesting influenced SS yields in a steep forested area. During harvesting, soil surface disturbance was prevented as much as possible by using skyline logging treatments and piling branches and leaves at selected locations in the watershed. Using these methods, the representative SS rating curve did not change significantly after harvesting. The results also show that the characteristics of SS transport were related to the SS source area, and reveal that the riparian zone/stream bank was a dominant SS source area at the study site. Annual SS yields did not increase despite increasing annual water yields after harvesting. The limited water capacity of the soil at the study site likely led to only slight differences in pre- and post-harvest water discharge from heavy rainfall events. Most SS was transported during heavy rainfall events, and increases in SS yields were not detected after harvesting. We concluded that it is possible to prevent post-harvest SS increases by performing careful, low-impact harvesting procedures. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2008
Fumitoshi Imaizumi
Abstract Landslides and debris flows associated with forest harvesting can cause much destruction and the influence of the timing of harvesting on these mass wasting processes therefore needs to be assessed in order to protect aquatic ecosystems and develop improved strategies for disaster prevention. We examined the effects of forest harvesting on the frequency of landslides and debris flows in the Sanko catchment (central Japan) using nine aerial photo periods covering 1964 to 2003. These photographs showed a mosaic of different forest ages attributable to the rotational management in this area since 1912. Geology and slope gradient are rather uniformly distributed in the Sanko catchment, facilitating assessment of forest harvesting effects on mass wasting without complication of other factors. Trends of new landslides and debris flows correspond to changes in slope stability explained by root strength decay and recovery; the direct impact of clearcutting on landslide occurrence was greatest in forest stands that were clearcut 1 to 10 yr earlier with progressively lesser impacts continuing up to 25 yr after harvesting. Sediment supply rate from landslides in forests clearcut 1 to 10 yr earlier was about 10-fold higher than in control sites. Total landslide volume in forest stands clearcut 0 to 25 yr earlier was 5·8 × 103 m3 km,2 compared with 1·3 × 103 m3 km,2 in clearcuts >25 yr, indicating a fourfold increase compared with control sites during the period when harvesting affected slope stability. Because landslide scars continue to produce sediment after initial failure, sediment supply from landslides continues for 45 yr in the Sanko catchment. To estimate the effect of forest harvesting and subsequent regeneration on the occurrence of mass wasting in other regions, changes in root strength caused by decay and recovery of roots should be investigated for various species and environmental conditions. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Precipitation control over inorganic nitrogen import,export budgets across watersheds: a synthesis of long-term ecological research

ECOHYDROLOGY, Issue 2 2008
E. S. Kane
Abstract We investigated long-term and seasonal patterns of N imports and exports, as well as patterns following climate perturbations, across biomes using data from 15 watersheds from nine Long-Term Ecological Research (LTER) sites in North America. Mean dissolved inorganic nitrogen (DIN) import,export budgets (N import via precipitation,N export via stream flow) for common years across all watersheds was highly variable, ranging from a net loss of , 0·17 ± 0·09 kg N ha,1mo,1 to net retention of 0·68 ± 0·08 kg N ha,1mo,1. The net retention of DIN decreased (smaller import,export budget) with increasing precipitation, as well as with increasing variation in precipitation during the winter, spring, and fall. Averaged across all seasons, net DIN retention decreased as the coefficient of variation (CV) in precipitation increased across all sites (r2 = 0·48, p = 0·005). This trend was made stronger when the disturbed watersheds were withheld from the analysis (r2 = 0·80, p < 0·001, n = 11). Thus, DIN exports were either similar to or exceeded imports in the tropical, boreal, and wet coniferous watersheds, whereas imports exceeded exports in temperate deciduous watersheds. In general, forest harvesting, hurricanes, or floods corresponded with periods of increased DIN exports relative to imports. Periods when water throughput within a watershed was likely to be lower (i.e. low snow pack or El Niño years) corresponded with decreased DIN exports relative to imports. These data provide a basis for ranking diverse sites in terms of their ability to retain DIN in the context of changing precipitation regimes likely to occur in the future. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Analysis of suspended sediment yields after low impact forest harvesting

HYDROLOGICAL PROCESSES, Issue 26 2007
Norifumi Hotta
Abstract Disturbances to forest catchments have profound effects on the environment of headwater streams and have an impact on suspended sediment (SS) management. Forest harvesting is a dominant factor in increasing SS yields. Road construction, skidder activity and ploughing associated with harvesting cause serious soil disturbance that results in SS increases. However, few studies have shown whether harvesting itself increases SS yields. This study examined how harvesting influenced SS yields in a steep forested area. During harvesting, soil surface disturbance was prevented as much as possible by using skyline logging treatments and piling branches and leaves at selected locations in the watershed. Using these methods, the representative SS rating curve did not change significantly after harvesting. The results also show that the characteristics of SS transport were related to the SS source area, and reveal that the riparian zone/stream bank was a dominant SS source area at the study site. Annual SS yields did not increase despite increasing annual water yields after harvesting. The limited water capacity of the soil at the study site likely led to only slight differences in pre- and post-harvest water discharge from heavy rainfall events. Most SS was transported during heavy rainfall events, and increases in SS yields were not detected after harvesting. We concluded that it is possible to prevent post-harvest SS increases by performing careful, low-impact harvesting procedures. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Disturbance facilitates rapid range expansion of aspen into higher elevations of the Rocky Mountains under a warming climate

JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
Simon M. Landhäusser
Abstract Aim, Trembling aspen (Populus tremuloides Michx.) is absent in the upper foothills region of west-central Alberta because of the cold conditions and short growing season at this high elevation. However, in recent years it appears that aspen has been establishing from seed in this zone and that it has been doing so mainly as a result of forest harvesting. The objectives of this study were to determine the frequency of and types of microsite required for the successful establishment of aspen seedlings at these higher elevations. Location, Rocky Mountains Upper Foothills Natural Subregion of west-central Alberta, Canada. Methods, The current distribution of mature aspen and the presence and absence of aspen seedlings in harvested areas were determined in an area c. 300 km2 in size, using ground and aerial surveys. In an intensive study, 12 belt transects (180 m long and 5 m wide) were established in areas disturbed by forest harvesting at high elevations where no aspen was present prior to harvesting. Transects were surveyed seven growing seasons after disturbance and the microsites occupied by aspen seedlings were characterized according to their substrate and microtopography. Similarly, the availability of different substrates and microtopographic positions were assessed by systematic point sampling on these sites. Results, On level surfaces, aspen seedling regeneration was found up to 200 m higher in elevation than the mature aspen in the original undisturbed forests. Overall, there were 428 seedlings ha,1 established on these transects, and the age distribution indicates that aspen seedlings had established in each of the seven growing seasons since the disturbance. Nearly all of the seedlings (93%) were established on mineral soil microsites and virtually no seedlings were established on undisturbed forest floor layers. Significantly more seedlings were found in concave microtopographic positions. Main conclusions, This study indicates that aspen establishment from seed is currently not a stochastic event and demonstrates that aspen is rapidly expanding its range upslope in the Canadian Rocky Mountain region as a result of forest management practices that expose mineral soil substrates in conjunction with a warming climate. The change in canopy composition from conifer to deciduous forests at these higher elevations will have far-reaching implications for ecosystem processes and functions. [source]


Effects on vegetation composition of a modified forest harvesting and propagation method compared with clear-cutting, scarification and planting

APPLIED VEGETATION SCIENCE, Issue 2 2008
Johan Bergstedt
Question: How does the vegetation of boreal forests respond to harvesting and scarification? Location: 650 m a.s.l., central Sweden (61°38' N). Methods: The response of boreal forest vegetation to cutting and scarification was studied in a field trial, which consisted of three treatments plus conventional harvesting as a control in a complete block design with four replicates. The cutting was done 14 years prior to vegetation inventory and scarification and planting were conducted the first or second years after cutting. Results: The species most abundant at higher cutting intensities were crustose lichens, Cladonia spp., Cladina arbuscula, Polytrichum spp. and pioneer mosses, the grass Deschampsia flexuosa, and the tree Betula pubescens, A few species had substantially lower abundance in treatments with higher cutting intensity, notably Hylocomium splendens and Vaccinium myrtillus. Scarification had a strong effect that was different from the one created by cutting. In scarification treatments, Polytrichum spp. were the only species with high abundance; most species had low abundance, i.e. Barbilophozia lycopodioides, Vaccinium vitis-idaea, Pleurozium schreberi, Carex globularis, Empetrum nigrum, Cladina arbuscula, Sphagnum spp. Conclusions: Our results elaborate on the details of the well-known effect of cutting on ground-layer flora, and also give support for the profound and long-lasting effect that soil scarification has on forest vegetation. [source]