Home About us Contact | |||
Forest Damage (forest + damage)
Selected AbstractsWind speed measurements and forest damage in Canton Zurich (Central Europe) from 1891 to winter 2007INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2010Tilo Usbeck Abstract The most severe damage to forests in central Europe occurs during winter storms that are caused by Northern Hemispheric mid-latitude cyclones. These winter storms have caused several catastrophic windthrows during the past four decades. Amounts of forest storm damage are believed to be a function of both the size of the forest and the storm intensity. To test this hypothesis, the Zurich region (city and canton) was chosen because long-term climate observation data is available for the region. The relationships between forest attributes, wind speed and forest damage were explored by comparing data on forests and wind speed from 107 winters with forest damage. Storm damage was defined as the proportion of damaged forests with respect to the growing stock. The variables: daily wind run (91 years), daily maximum hourly average wind speed (107 years) and peak gust wind speed (74 years) were homogenized with respect to high wind speed and related to levels of forest damage. High maximum wind speed at the end of the 19th century and at the beginning of the 20th century was followed by low maximum wind speed in the 1940s, 1960s and 1970s. Since then, maximum values have increased. Gusts (extremes of the maximum wind speed) increased from the beginning of the recordings in 1933 and peaked in the early 1990s. Forest damage due to winter storms is best correlated with peak wind speed. Gusts exceeding 40 m/s and resulting in catastrophic windthrow have increased in recent winters. Copyright © 2009 Royal Meteorological Society [source] Forest blowdown impacts of Hurricane Rita on fluvial systemsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2009Jonathan D. Phillips Abstract Hurricane Rita, a category three hurricane which struck the US Gulf Coast near the Louisiana/Texas border in 2005, did not cause extensive river flooding. However, the storm did result in extensive forest damage and tree blowdown. High-resolution post-storm aerial photography allowed an inventory of river bank trees blown into the channel along the lower Neches and Sabine Rivers of southeast Texas and southwest Louisiana. Blowdowns directly into the channel averaged 9·3 per kilometer in the lower Neches and 13·4 in the lower Sabine River, but individual reaches 10 to 20 km in length had rates of 20 to 44 blowdowns per kilometer. Though large woody debris (LWD) from Hurricane Rita was widely perceived to reduce the capacity of channels to convey flow, no strong evidence exists of increased flooding or significant reductions in channel conveyance capacity due to LWD from the storm. The Rita blowdown inventory also allowed an assessment of whether similar blowdown events could account for major logjams and rafts on Red, Atchafalaya, and Colorado Rivers on the Gulf Coast, which blocked navigation from tens to hundreds of kilometers in the 1800s. Results from Hurricane Rita suggest that blowdown into channels alone , not withstanding blowdown elsewhere in the river valleys or along tributaries which could deliver LWD to the river , is sufficient to completely block channels, thus providing a plausible mechanism for initiating such (pre)historic log rafts. Copyright © 2009 John Wiley & Sons, Ltd. [source] Wind speed measurements and forest damage in Canton Zurich (Central Europe) from 1891 to winter 2007INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2010Tilo Usbeck Abstract The most severe damage to forests in central Europe occurs during winter storms that are caused by Northern Hemispheric mid-latitude cyclones. These winter storms have caused several catastrophic windthrows during the past four decades. Amounts of forest storm damage are believed to be a function of both the size of the forest and the storm intensity. To test this hypothesis, the Zurich region (city and canton) was chosen because long-term climate observation data is available for the region. The relationships between forest attributes, wind speed and forest damage were explored by comparing data on forests and wind speed from 107 winters with forest damage. Storm damage was defined as the proportion of damaged forests with respect to the growing stock. The variables: daily wind run (91 years), daily maximum hourly average wind speed (107 years) and peak gust wind speed (74 years) were homogenized with respect to high wind speed and related to levels of forest damage. High maximum wind speed at the end of the 19th century and at the beginning of the 20th century was followed by low maximum wind speed in the 1940s, 1960s and 1970s. Since then, maximum values have increased. Gusts (extremes of the maximum wind speed) increased from the beginning of the recordings in 1933 and peaked in the early 1990s. Forest damage due to winter storms is best correlated with peak wind speed. Gusts exceeding 40 m/s and resulting in catastrophic windthrow have increased in recent winters. Copyright © 2009 Royal Meteorological Society [source] A spatial model for the needle losses of pine-trees in the forests of Baden-Württemberg: an application of Bayesian structured additive regressionJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 1 2007Nicole H. Augustin Summary., The data that are analysed are from a monitoring survey which was carried out in 1994 in the forests of Baden-Württemberg, a federal state in the south-western region of Germany. The survey is part of a large monitoring scheme that has been carried out since the 1980s at different spatial and temporal resolutions to observe the increase in forest damage. One indicator for tree vitality is tree defoliation, which is mainly caused by intrinsic factors, age and stand conditions, but also by biotic (e.g. insects) and abiotic stresses (e.g. industrial emissions). In the survey, needle loss of pine-trees and many potential covariates are recorded at about 580 grid points of a 4 km × 4 km grid. The aim is to identify a set of predictors for needle loss and to investigate the relationships between the needle loss and the predictors. The response variable needle loss is recorded as a percentage in 5% steps estimated by eye using binoculars and categorized into healthy trees (10% or less), intermediate trees (10,25%) and damaged trees (25% or more). We use a Bayesian cumulative threshold model with non-linear functions of continuous variables and a random effect for spatial heterogeneity. For both the non-linear functions and the spatial random effect we use Bayesian versions of P -splines as priors. Our method is novel in that it deals with several non-standard data requirements: the ordinal response variable (the categorized version of needle loss), non-linear effects of covariates, spatial heterogeneity and prediction with missing covariates. The model is a special case of models with a geoadditive or more generally structured additive predictor. Inference can be based on Markov chain Monte Carlo techniques or mixed model technology. [source] The response of tree squirrels to fragmentation: a review and synthesisANIMAL CONSERVATION, Issue 4 2005John L. Koprowski Habitat fragmentation is often considered a major threat to biodiversity; however, our understanding of how fragmentation impacts populations is poor. Identifying appropriate models for such studies is difficult. Tree squirrels are dependent on mature forests for food, cover and nests; these are habitats that are being fragmented rapidly and that are easily defined by humans. Squirrels represent excellent models for study of fragmentation. The literature on tree squirrels was reviewed to glean data on density and home-range size in forest fragments. Sufficient data were available on four species (Sciurus carolinensis, S. niger, S. vulgaris, Tamiasciurus hudsonicus). Density was negatively related to fragment size for S. carolinensis and S. niger and marginally so for T. hudsonicus. Sciurus vulgaris did not exhibit this relationship. Home-range size was analysed for three species of Sciurus and was positively related to forest fragment size for S. carolinensis and S. niger. Again, only S. vulgaris did not to show this relationship. Sciurus vulgaris is rarely found in small forest fragments and is believed to be especially sensitive to fragmentation; other tree squirrels appear to be sensitive to fragmentation in more subtle ways. Home range compaction provides a mechanism by which densities may increase in small fragments. The demographic consequences resultant from the high densities of squirrels found in small woodlots are not known but may explain the forest damage, avian nest predation and reduced diversity often cited to occur in woodland fragments. [source] |