Forest Characteristics (forest + characteristic)

Distribution by Scientific Domains


Selected Abstracts


Measurements of transpiration in four tropical rainforest types of north Queensland, Australia

HYDROLOGICAL PROCESSES, Issue 26 2007
David McJannet
Abstract Transpiration of four different rainforest types in north Queensland, Australia, was determined using the heat pulse technique for periods ranging between 391 and 657 days. Despite the complexity of the natural rainforest systems being studied, the relationship between sample tree size and daily water use was found to be strong, thus providing a robust means by which to scale transpiration from individual trees to the entire forest stand. Transpiration was shown to be dependent on solar radiation and atmospheric demand for moisture with little evidence of limitation by soil moisture supply. Total stand transpiration was controlled by forest characteristics such as stem density, size distribution and sapwood area. Annual transpiration for each of the four sites ranged between 353 mm for cloud forest and 591 mm for montane rainforest. In comparison with the international literature, transpiration from Australian rainforests is low; the reasons for this could be related to a combination of differences in forest structure, climatic conditions, canopy wetness duration and tree physiology. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Avian distribution in treefall gaps and understorey of terra firme forest in the lowland Amazon

IBIS, Issue 1 2005
JOSEPH M. WUNDERLE JR
We compared the bird distributions in the understorey of treefall gaps and sites with intact canopy in Amazonian terra firme forest in Brazil. We compiled 2216 mist-net captures (116 species) in 32 gap and 32 forest sites over 22.3 months. Gap habitats differed from forest habitats in having higher capture rates, total captures, species richness and diversity. Seventeen species showed a significantly different distribution of captures between the two habitats (13 higher in gap and four higher in forest). Gap habitats had higher capture rates for nectarivores, frugivores and insectivores. Among insectivores, capture rates for solitary insectivores and army ant followers did not differ between the two habitats. In contrast, capture rates were higher in gaps for members of mixed-species insectivore flocks and mixed-species insectivore,frugivore flocks. Insectivores, especially members of mixed-species flocks, were the predominant species in gap habitats, where frugivores and nectarivores were relatively uncommon. Although few canopy species were captured in gap or forest habitats, visitors from forest mid-storey constituted 42% of the gap specialist species (0% forest) and 46% of rare gap species (38% forest). Insectivore, and total, captures increased over time, but did so more rapidly in gap than in forest habitats, possibly as a response to gap succession. However, an influx of birds displaced by nearby timber harvest also may have caused these increases. Avian gap-use in Amazonian terra firme forests differs from gap-use elsewhere, partly because of differences in forest characteristics such as stature and soil fertility, indicating that the avian response to gaps is context dependent. [source]


Tree and forest characteristics influence sleeping site choice by golden lion tamarins

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 9 2007
Sarah J. Hankerson
Abstract Lion tamarin monkeys are among a small number of primates that repeatedly use a few tree holes for the majority of their sleeping sites. To better understand why lion tamarins rely on tree holes as sleeping sites, we compared the physical characteristics of frequently used sleeping sites, infrequently used sleeping sites, and randomly selected forest locations at multiple spatial scales. From 1990 to 2004, we recorded 5,235 occurrences of sleeping site use by 10 groups of golden lion tamarins (Leontopithecus rosalia) in Poço das Antas Reserve, Rio de Janeiro State, Brazil. Of those, 63.6% were tree holes. Bamboo accounted for an additional 17.5% of observations. Frequently used tree holes were more likely to be found in living trees and their entrances were at lower canopy heights than infrequently used tree holes. We also found that frequently used sleeping sites, in comparison to random sites, were more likely to be found on hillsides, be close to other large trees, have a lower percent of canopy cover, and have larger diameter at breast height. Topography and small-scale variables were more accurate than were habitat-level classifications in predicting frequently used sleeping sites. There are ample tree holes available to these lion tamarins but few preferred sites to which they return repeatedly. The lion tamarins find these preferred sites wherever they occur including in mature forest and in relics of older forest embedded in a matrix of secondary forest. Am. J. Primatol. 69:976,988, 2007. © 2007 Wiley-Liss, Inc. [source]


Palaeovegetational and palaeoenvironmental trends in the summit of the Guaiquinima massif (Venezuelan Guayana) during the Holocene,

JOURNAL OF QUATERNARY SCIENCE, Issue 2 2005
Valentí Rull
Abstract The summits of the table mountains (tepuis) from the Neotropical Guayana region are remote environments suitable for palaeoecological studies with evolutionary, biogeographical and palaeoclimatic implications. Here, using palynological analyses of two radiocarbon-dated peat bogs from a tepui summit, the Holocene palaeovegetational trends are reconstructed, and related to possible forcing factors. Because of the pristine character of the Guaiquinima summit, the recorded palaeoenvironmental changes are probably due to natural causes, which makes them valuable archives of the natural component of climatic change at a millennial time scale. The sequence begins with pioneer communities or meadows similar to present-day ones, between about 8.4 and 4.5,ky BP. After this date, and until about 2,kyr BP the expansion of gallery forests suggests an increase in precipitation, documented also at regional (Neotropical) level. Between ca. 2,kyr BP and the last century, gallery forests are replaced by forests characteristic of the upper Guaiquinima altitudes, coinciding with a regional phase of reduced moisture. The present-day meadows, established relatively quickly during the last century, substituted the former upland forests. In the locality studied, the main controlling factor of the vegetation during the Holocene seems to have been the moisture balance. In contrast to other tepui summits, there is no clear evidence for changes linked to temperature oscillations. This could be due to the elevation of the site, far from any characteristic ecological boundary, that makes it insensitive to this parameter. Copyright © 2005 John Wiley & Sons, Ltd. [source]