Forecast System (forecast + system)

Distribution by Scientific Domains


Selected Abstracts


How much does simplification of probability forecasts reduce forecast quality?

METEOROLOGICAL APPLICATIONS, Issue 1 2008
F. J. Doblas-Reyes
Abstract Probability forecasts from an ensemble are often discretized into a small set of categories before being distributed to the users. This study investigates how such simplification can affect the forecast quality of probabilistic predictions as measured by the Brier score (BS). An example from the European Centre for Medium-Range Weather Forecasts (ECMWF) operational seasonal ensemble forecast system is used to show that the simplification of the forecast probabilities reduces the Brier skill score (BSS) by as much as 57% with respect to the skill score obtained with the full set of probabilities issued from the ensemble. This is more obvious for a small number of probability categories and is mainly due to a decrease in forecast resolution of up to 36%. The impact of the simplification as a function of the ensemble size is also discussed. The results suggest that forecast quality should be made available for the set of probabilities that the forecast user has access to as well as for the complete set of probabilities issued by the ensemble forecasting system. Copyright © 2008 Royal Meteorological Society [source]


Simulation of the Madden, Julian Oscillation and its teleconnections in the ECMWF forecast system

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 649 2010
Frédéric Vitart
Abstract A series of 46-day ensemble integrations starting on the 15th of each month from 1989 to 2008 has been completed with the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast system. The Madden, Julian Oscillation (MJO) simulated by the hindcasts is diagnosed using an index based on combined empirical orthogonal functions (EOFs) of zonal winds at 200 and 850 hPa and outgoing long-wave radiation. Results indicate that the dynamical model is able to maintain the amplitude of the MJO during the 46 days of integrations and the model displays skill for up to about 20 days to predict the evolution of the MJO. However, the MJO simulated by the model has a too slow eastward propagation and has difficulties crossing the Maritime Continent. The MJO teleconnections simulated by the ECMWF forecast system have been compared to reanalyses. In the Tropics, the impact of the MJO on precipitation is generally consistent with reanalysis. In the Northern Extratropics, the MJO simulated by the model has an impact on North Atlantic weather regimes, but with a smaller amplitude than in reanalysis which can be partly explained by the too slow eastward propagation of the simulated MJO events. The impact of the MJO on the probabilistic skill scores has been assessed. Results indicate that the MJO simulated by the model has a statistically significant impact on weekly mean probabilistic skill scores in the Northern Extratropics, particularly at the time range 19, 25 days. At this time range, the reliability of the probabilistic forecasts over Europe depends strongly on the presence of an MJO event in the initial conditions. This result confirms that the MJO is a major source of predictability in the Extratropics in the sub-seasonal time-scale. Copyright © 2010 Royal Meteorological Society [source]


Hydrological seasonal forecast over France: feasibility and prospects

ATMOSPHERIC SCIENCE LETTERS, Issue 2 2010
J.-P. Céron
Abstract This article presents a first evaluation of a hydrological forecasting suite at seasonal time scales over France. The hydrometeorological model SAFRAN-ISBA-MODCOU is forced by seasonal forecasts from the DEMETER project for the March,April,May period. Despite a simple downscaling method, the atmospheric forcings are reasonably well represented at the finest scale. The computed soil moisture shows some predictability with large regions of correlation above 0.3. Probabilistic scores for soil moisture and river flows for four different catchments are higher than that for atmospheric variables. These results suggest to go further for building an operational hydrological seasonal forecast system. Copyright © 2010 Royal Meteorological Society [source]


Communicating the value of probabilistic forecasts with weather roulette

METEOROLOGICAL APPLICATIONS, Issue 2 2009
Renate Hagedorn
Abstract In times of ever increasing financial constraints on public weather services it is of growing importance to communicate the value of their forecasts and products. While many diagnostic tools exist to evaluate forecast systems, intuitive diagnostics for communicating the skill of probabilistic forecasts are few. When the goal is communication with a non-expert audience it can be helpful to compare performance in more everyday terms than ,bits of information'. Ideally, of course, the method of presentation will be directly related to specific skill scores with known strengths and weaknesses. This paper introduces Weather Roulette, a conceptual framework for evaluating probabilistic predictions where skill is quantified using an effective daily interest rate; it is straightforward to deploy, comes with a simple storyline and importantly is comprehensible and plausible for a non-expert audience. Two variants of Weather Roulette are presented, one of which directly reflects proper local skill scores. Weather Roulette contrasts the performance of two forecasting systems, one of which may be climatology. Several examples of its application to ECMWF forecasts are discussed illustrating this new tool as useful addition to the suite of available probabilistic scoring metrics. Copyright © 2008 Royal Meteorological Society [source]


The value of observations.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 628 2007
III: Influence of weather regimes on targeting
Abstract This paper assesses the value of targeted observations over the North Atlantic Ocean for different meteorological flow regimes. It shows that during tropical cyclone activity and particularly tropical cyclone transition to extratropical characteristics, removing observations in sensitive regions, indicated by singular vectors optimized on the 2-day forecast over Europe, degrades the skill of a given forecast more so than excluding observations in randomly selected regions. The maximum downstream degradation computed in terms of spatially and temporally averaged root-mean-square error of 500 hPa geopotential height is about 13%, a value which is 6 times larger than when removing observations in randomly selected areas. The forecast impact for these selected periods, resulting from degrading the observational coverage in sensitive areas, was similar to the impact found (elsewhere in other weather forecast systems) for the observational targeting campaigns carried out over recent years, and it was larger than the average impact obtained by considering a larger set of cases covering various seasons. Copyright © 2007 Royal Meteorological Society [source]