Food Density (food + density)

Distribution by Scientific Domains


Selected Abstracts


The ontogeny of foragwehaviour in desert ants, Cataglyphis bicolor

ECOLOGICAL ENTOMOLOGY, Issue 2 2004
Rüdiger Wehner
Abstract. 1. Individually foraging desert ants, Cataglyphis bicolor, exhibit short foraging lives (half lifetime, i.e. half-time of the exponential decay function: 4.5 days), in which they perform 3.7 ± 1.9 foraging runs per day. 2. During their short lifetime foraging period the ants increase the duration of their foraging round trips (up to 40.0 ± 24.6 min per run), the maximal distance of individual foraging runs (up to 28.2 ± 4.1 m), and their foraging success, i.e. the ratio of successful runs to the total number of runs (up to 0.70). 3. The parameter that increases most dramatically during a forager's lifetime is direction fidelity, i.e. the tendency to remain faithful to a particular foraging direction. 4. A model based on some simple behavioural rules is used to describe the experimental findings that within an isotropic food environment individual ants develop spatial foraging idiosyncrasies, and do so at a rate that increases with the food densities they encounter. 5. Finally, it is argued that in functional terms direction fidelity is related to the navigational benefits resulting from exploiting familiar (route-based) landmark information, and hence reduces round-trip time and by this physiological stress and predatory risk. [source]


On the ecology of the rotifer Cephalodella hoodi from an extremely acidic lake

FRESHWATER BIOLOGY, Issue 9 2005
GUNTRAM WEITHOFF
Summary 1.,The biovolume-specific carbon content, relative egg volume (a measure of per-offspring reproductive investment), growth and grazing rates, and the gross growth efficiency (GGE) of the rotifer Cephalodella hoodi, isolated from an extremely acidic habitat (pH 2.65), were determined and compared with literature values for rotifers living in circum-neutral habitats in order to reveal potential special features or adaptations related to the extreme habitat of C. hoodi. 2.,Of the two dominant phytoflagellates (Ochromonas sp. and Chlamydomonas acidophila) that occur in the natural habitat of C. hoodi, only C. acidophila promoted positive growth and reproduction and, thus, the following results were obtained with C. acidophila as a food alga. 3.,The body volume-specific carbon content of C. hoodi is in the range of that found in rotifers from circum-neutral lakes, suggesting that no costly carbon investment, brought about by the thickening of the lorica, for example, was required to withstand low pH. 4.,The egg volume of C. hoodi exhibited no phenotypic plasticity dependent on the food concentration and, thus, C. hoodi allocated a constant, absolute amount of energy to each individual offspring. No adaptation to low food densities was found. 5.,A dome-shaped type II functional response curve was found to describe the ingestion of Chlamydomonas as a source of food. 6.,Compared with other rotifers, C. hoodi had a high threshold and half-saturating food concentration (=low affinity) but also a high maximum growth rate and a relatively high GGE, suggesting no severe adverse effect of low pH. [source]


Predator size, prey size and threshold food densities of diving ducks: does a common prey base support fewer large animals?

JOURNAL OF ANIMAL ECOLOGY, Issue 5 2009
Samantha E. Richman
Summary 1. Allometry predicts that a given habitat area or common prey biomass supports fewer numbers of larger than smaller predators; however, birds from related taxa or the same feeding guild often deviate from this pattern. In particular, foraging costs of birds may differ among locomotor modes, while intake rates vary with accessibility, handling times and energy content of different-sized prey. Such mechanisms might affect threshold prey densities needed for energy balance, and thus relative numbers of different-sized predators in habitats with varying prey patches. 2. We compared the foraging profitability (energy gain minus cost) of two diving ducks: smaller lesser scaup (Aythya affinis, 450,1090 g) and larger white-winged scoters (Melanitta fusca, 950,1800 g). Calculations were based on past measurements of dive costs with respirometry, and of intake rates of a common bivalve prey ranging in size, energy content and burial depth in sediments. 3. For scaup feeding on small prey <12 mm long, all clams buried deeper than 5 cm were unprofitable at realistic prey densities. For clams buried in the top 5 cm, the profitability threshold decreased from 216 to 34 clams m,2 as energy content increased from 50 to 300 J clam,1. 4. For larger scoters feeding on larger prey 18,24 mm long, foraging was profitable for clams buried deeper than 5 cm, with a threshold density of 147 m,2 for clams containing 380 J clam,1. For clams <5 cm deep, the threshold density decreased from 86 to 36 clams m,2 as energy content increased from 380 to 850 J clam,1. If scoters decreased dive costs by swimming with wings as well as feet (not an option for scaup), threshold prey densities were 11,12% lower. 5. Our results show that threshold densities of total prey numbers for different-sized ducks depend on prey size structure and depth in the sediments. Thus, heterogeneity in disturbance regimes and prey population dynamics can create a mosaic of patches favouring large or small predators. Whether a given area or total prey biomass will support greater numbers of larger or smaller predators will vary with these effects. [source]


Validation of daily increment formation and the effects of different temperatures and feeding regimes on short-term otolith growth in Australian smelt Retropinna semoni

ECOLOGY OF FRESHWATER FISH, Issue 2 2008
Z. Tonkin
Abstract,,, To aid otolith interpretation of wild fish, we conducted a laboratory study using metalarval Australian smelt (Retropinna semoni) collected from the Murray River, to examine daily increment deposition and the effects of different temperatures and feeding regimes on otolith growth. Daily increment deposition was confirmed by comparing the number of increments from an oxytetracycline mark with the known number of days from marking. After holding fish at two temperature levels and three feeding rates, both food density and temperature were found to have a significant effect on otolith growth, with food density having the greatest influence. Overall trends in final lengths and condition of fish were well represented by recent otolith growth. The results of the experiment have implications for estimating growth histories and its relationship to various environmental conditions. [source]


The effect of habitat complexity on the functional response of a seed-eating passerine

IBIS, Issue 3 2009
DAVID J. BAKER
Recent population declines of seed-eating farmland birds have been associated with reduced overwinter survival due to reductions in food supply. An important component of predicting how food shortages will affect animal populations is to measure the functional response, i.e. the relationship between food density and feeding rate, over the range of environmental conditions experienced by foraging animals. Crop stubble fields are an important foraging habitat for many species of seed-eating farmland bird. However, some important questions remain regarding farmland bird foraging behaviour in this habitat, and in particular the effect of stubble on farmland bird functional responses is unknown. We measured the functional responses of a seed-eating passerine, the Chaffinch Fringilla coelebs, consuming seeds placed on the substrate surface in three different treatments: bare soil, low density stubble and high density stubble. Stubble presence significantly reduced feeding rates, but there was no significant difference between the two stubble treatments. Stubble reduced feeding rates by reducing the maximum attack distance, i.e. the distance over which an individual food item is targeted and consumed. The searching speed, handling time per seed, proportion of time spent vigilant, duration of vigilance bouts and duration of head-down search periods were unaffected by the presence of stubble. The frequency of vigilance bouts was higher in the bare soil treatment, but this is likely to be a consequence of the increased feeding rate. We show the influence of a key habitat type on the functional response of a seed-eating passerine, and discuss the consequences of this for farmland bird conservation. [source]


Retrodicting patch use by foraging swans in a heterogeneous environment using a set of functional responses

OIKOS, Issue 3 2009
Bart A. Nolet
Effective conservation of important bird areas requires insight in the number of birds an area can support, and how this carrying capacity changes with habitat modifications. When food depletion is the dominant mechanism of competition, it should in principle be possible to calculate the total time foragers can spend per patch from their functional response (intake rate as a function of food density). However, in the field there are likely to be factors modulating the functional response. In this study previously published results of experiments on captive Bewick's swans were used to obtain functional responses of swans digging for tubers of Fennel pondweed on different foraging substrates: sandy and clayey sediment, and in shallow and deep water. In a field study, four 250×250 m sections belonging to different types (sandy,shallow, clayey,shallow, sandy,deep and clayey,deep) were delineated. Here tubers were sampled with sediment corers in three years, both before and after swan exploitation in autumn, and swans were observed and mapped from a hide in two of these years. Giving-up tuber biomass densities varied among sections. Substitution of these giving-up densities in the derived patch-type-specific functional responses yielded the quitting net energy intake rates in the four sections. As expected from the marginal value theorem, the quitting net energy intake rates did not vary among sections. Moreover, the observed foraging pressure (total foraging time per area) per patch type was in quantitative agreement with the integrated functional responses. These results suggest that in spatially heterogeneous environments, patch exploitation by foragers can be predicted from their functional responses after accounting for foraging substrate. [source]


Improved techniques for rearing mud crab Scylla paramamosain (Estampador 1949) larvae

AQUACULTURE RESEARCH, Issue 14 2007
Truong Trong Nghia
Abstract A series of rearing trials in small 1 L cones and large tanks of 30,100 L were carried out to develop optimal rearing techniques for mud crab (Scylla paramamosain) larvae. Using water exchange (discontinuous partial water renewal or continuous treatment through biofiltration) and micro-algae (Chlorella or Chaetoceros) supplementation (daily supplementation at 0.1,0.2 million cells mL,1 or maintenance at 1,2 millions cells mL,1), six different types of rearing systems were tried. The combination of a green-water batch system for early stages and a recirculating system with micro-algae supplementation for later stages resulted in the best overall performance of the crab larvae. No clear effects of crab stocking density (50,200 larvae L,1) and rotifer (30,60 rotifers mL,1) and Artemia density (10,20 L,1) were observed. A stocking density of 100,150 zoea 1 (Z1) L,1, combined with rotifer of 30,45 mL,1 for early stages and Artemia feeding at 10,15 nauplii mL,1 for Z3,Z5 seemed to produce the best performance of S. paramamosain larvae. Optimal rations for crab larvae should, however, be adjusted depending on the species, larval stage, larval status, prey size, rearing system and techniques. A practical feeding schedule could be to increase live food density from 30 to 45 rotifers mL,1 from Z1 to Z2 and increase the number of Artemia nauplii mL,1 from 10 to 15 from Z3 to Z5. Bacterial disease remains one of the key factors underlying the high mortality in the zoea stages. Further research to develop safe prophylactic treatments is therefore warranted. Combined with proper live food enrichment techniques, application of these findings has sustained a survival rate from Z1 to crab 1,2 stages in large rearing tanks of 10,15% (maximum 30%). [source]