Home About us Contact | |||
Food Chain Length (food + chain_length)
Selected AbstractsInfluence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi RiverFRESHWATER BIOLOGY, Issue 3 2009KATHERINE A. ROACH Summary 1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among-habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers. [source] Flood disturbance, algal productivity, and interannual variation in food chain lengthOIKOS, Issue 1 2000Jane C. Marks The length of a river food chain changed from year to year, shifting with the hydrologic regime. During drought years, grazers suppressed algae across a nutrient gradient, while predators were functionally unimportant. Following flood disturbance, predators suppressed grazers, releasing algae. These results suggest that hydrologic regime, rather than productivity, determines the functional length of this river food chain. Within years, algae and grazer biomass responded to an experimental productivity gradient in patterns predicted by simple trophic models that assume efficient energy transfer. Understanding differences among species within trophic levels, however, was crucial in delineating the controlling interactions. [source] Stability of ecosystem properties in response to above-ground functional group richness and compositionOIKOS, Issue 1 2000David A. Wardle While there has been a rapidly increasing research effort focused on understanding whether and how composition and richness of species and functional groups may determine ecosystem properties, much remains unknown about how these community attributes affect the dynamic properties of ecosystems. We conducted an experiment in 540 mini-ecosystems in glasshouse conditions, using an experimental design previously shown to be appropriate for testing for functional group richness and composition effects in ecosystems. Artificial communities representing 12 different above-ground community structures were assembled. These included treatments consisting of monoculture and two- and four-species mixtures from a pool of four plant species; each plant species represented a different functional group. Additional treatments included two herbivore species, either singly or in mixture, and with or without top predators. These experimental units were then either subjected to an experimentally imposed disturbance (drought) for 40 d or left undisturbed. Community composition and drought both had important effects on plant productivity and biomass, and on several below-ground chemical and biological properties, including those linked to the functioning of the decomposer subsystem. Many of these compositional effects were due to effects both of plant and of herbivore species. Plant functional group richness also exerted positive effects on plant biomass and productivity, but not on any of the below-ground properties. Above-ground composition also had important effects on the response of below-ground properties to drought and thus influenced ecosystem stability (resistance); effects of composition on drought resistance of above-ground plant response variables and soil chemical properties were weaker and less consistent. Despite the positive effects of plant functional group richness on some ecosystem properties, there was no effect of richness on the resistance of any of the ecosystem properties we considered. Although herbivores had detectable effects on the resistance of some ecosystem properties, there were no effects of the mixed herbivore species treatment on resistance relative to the single species herbivore treatments. Increasing above-ground food chain length from zero to three trophic levels did not have any consistent effect on the stability of ecosystem properties. There was no evidence of either above-ground composition or functional group richness affecting the recovery rate of ecosystem properties from drought and hence ecosystem resilience. Our data collectively point to the role of composition (identity of functional group), but not functional group richness, in determining the stability (resistance to disturbance) of ecosystem properties, and indicates that the nature of the above-ground community can be an important determinant of the consistency of delivery of ecosystem services. [source] |