Follicular Development (follicular + development)

Distribution by Scientific Domains


Selected Abstracts


Ovarian follicular development stimulated by leuprorelin acetate plus human menopausal gonadotropin in chimpanzees

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2005
Nobuhiko Yoshimoto
Abstract:, We attempted ovarian stimulation using gonadotropins in 14 chimpanzees. Subjects were given a single administration of leuprorelin acetate, followed by repeated administration of human menopausal gonadotropin (hMG) for 16,21 days. During the dosing period, the ovarian follicle diameter and count were measured by transvaginal ultrasonography. The hormone administration induced the development of multiple follicles, and multiple oocytes were subsequently retrieved. However, the follicle count was decreased, suggesting atresia, in some subjects. Statistically, the final follicle diameter was dependent on the dosing duration and the hMG dose in the late stage, while the maximum follicle count during hMG administration was dependent on age and the hMG dose in the early stage. Five subjects showed mild ovarian hyperstimulation syndrome (OHSS)-like symptoms with a high serum estradiol (E2) concentration. These results suggest that leuprorelin acetate plus hMG administration successfully stimulates the development of multiple ovarian follicles for oocyte retrieval and that the serum E2 concentration is predictive of OHSS-like symptoms in chimpanzees. [source]


Reproductive seasonality in the Tete veld rat (Aethomys ineptus) (Rodentia: Muridae) from southern Africa

JOURNAL OF ZOOLOGY, Issue 2 2006
S. P. Muteka
Abstract Very little is known about the reproductive biology of the recently recognized Tete veld rat Aethomys ineptus. In the present study, we investigated the seasonality of reproduction in this newly recognized rodent using a number of histological and endocrinological parameters. Body mass, reproductive tract morphometrics, gonadal histology, and plasma testosterone concentrations in males and plasma oestradiol-17, and progesterone concentrations in females were assessed from a population in the north-central part of South Africa over a 12-month period in order to ascertain the pattern of reproduction in the species. Seminiferous tubule diameters in 59 males were significantly larger between September and February relative to between March and August. Although spermatogenesis was prevalent in the southern hemisphere winter (June,August), the number of spermatozoa in the epididymides decreased in the southern hemisphere spring (September,November), summer (December,February) and autumn (March,May). Testicular mass relative to body mass and testicular volume regressed between May and September but exhibited recrudescence between September and April, whereas plasma testosterone concentrations increased significantly between September and February relative to between March and August. Ovarian histology of 67 females showed corpora lutea to be present throughout the year, but decreased in number during winter, whereas mean plasma progesterone concentration increased significantly between August and November and again between February and April. This bimodal pattern of progesterone concentration suggests that up to two litters per breeding season may be raised by the Tete veld rat. Gravid females were found between October and April, whereas gravid or lactating females were conspicuously absent between May and September. Collation of all these data suggests that the Tete veld rat is a seasonal breeder with reproduction confined predominantly to summer and autumn months of the southern hemisphere. However, the presence of follicular development in females and the presence of corpora lutea outside the breeding season imply that the Tete veld rat may undergo spontaneous ovulation. [source]


Higher expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR/SF2) during follicular development and cumulus oocyte complex maturation in rat

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2008
Sonu Chand Thakur
Abstract Ovulation is a complex process of releasing a fertilizable oocyte and depends on the proper formation of an extracellular hyaluronan rich matrix by the cumulus oocyte complex (COC). The formation of a HA rich matrix is dependent on the synthesis and organization of HA in the presence of several biomolecules that mediate its crosslinking. To gain an insight into the follicular maturation and COC expansion, we have studied the expression of hyaluronan binding protein 1 (HABP1), which is known to interact specifically with hyaluronan. The level of HABP1 increased markedly during ovulation after gonadotropin stimulation, and the overexpression was seen in mural granulosa cells, expanding cumulus cells and follicular fluid. However, HABP1 could not be detected in the luteal cells of corpus luteum after ovulation. Such increased expression of HABP1 was observed both during in vivo and in vitro conditions of COC expansion. The level of HABP1 transcript was upregulated up to fivefold after COC expansion as compared to compact COC. Immunofluorescence analysis showed HABP1 to be localized in the cytoplasm and extracellular matrix, suggesting its role in ECM organization. The cultured expanded COC treated with hyaluronidase for different time periods showed the gradual dispersion of COC, which coincide with the loss of HABP1 from the matrix suggesting that HABP1 is bound to hyaluronan. These results indicate that HABP1 expressed in rat COCs during maturation may facilitate the formation of the HA matrix in the extracellular space around the oocyte with cumulus expansion during maturation. Mol. Reprod. Dev. 75: 429,438, 2008. © 2007 Wiley-Liss, Inc. [source]


Towards a ZP-based contraceptive for marsupials: Comparative analysis and developmental expression of marsupial ZP genes

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2007
Carmen A. McCartney
Abstract Fertility control in the form of a zona pellucida (ZP)-based immunocontraceptive has shown potential as a humane form of control for overabundant marsupials including the brushtail possum and macropods. Further refinement and development of a ZP-based vaccine requires detailed knowledge of the protein structure and expression in order to ensure maximum efficacy and specificity. Sequencing and comparative analysis of the ZP3 protein from three marsupial orders in this study found a high overall level of conservation; within order Diprotodontia, the ZP3 protein is 86.9,98.9% identical. ZP3 identity falls to 56.6,57.2%, when the grey, short-tailed opossum (a Didelphimorphian) is compared to dasyurid and diprotodontan marsupials. This is similar to its amino acid identity with ZP3 from eutherian species (50.7,52.8%). Comparison of a 21 amino acid epitope in marsupial ZP3 that has shown contraceptive effects, reveals 95,100% identity between the four macropodid species, 81,86% amino acid identity between brushtail possum and the macropods and 67,71% identity between the diprotodontans and the fat-tailed dunnart (a dasyurid). This is comparable to the level of identity between related eutherian mammals. The expression pattern of three ZP genes during brushtail possum and tammar wallaby pouch young development was examined by RT-PCR. This analysis of ZP gene expression has confirmed that ZP mRNA transcription begins in the ovary during pouch young development by about 51 days of age. The presence of ZP transcripts at this stage in pouch young development suggests that marsupial ZP gene transcription begins before the onset of follicular development. Mol. Reprod. Dev. 74: 1581,1589, 2007. © 2007 Wiley-Liss, Inc. [source]


Changes in expression of anti-apoptotic protein, cflip, in granulosa cells during follicular atresia in porcine ovaries

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005
Fuko Matsuda-Minehata
Follicular selection is performed in mammalian ovaries, as most follicles undergo atresia during follicular development and growth. Follicular regression is indicated to begin with granulosa cell apoptosis. To reveal the molecular mechanisms of the selection, we examined the changes in the levels of cellular-Flice like inhibitory protein (cFLIP) expression in porcine granulosa cells. cFLIP is the homologue of intracellular apoptosis inducer (procaspase-8/Flice), and has two alternative splicing isoforms: cFLIP short form (cFLIPS) and long form (cFLIPL). By competing with caspase-8, cFLIP inhibits apoptosis initiated by death receptors. The changes in the levels of cFLIPS and cFLIPL mRNA and protein expression in granulosa cells were determined by RT-PCR and Western blotting, respectively. cFLIPL mRNA and protein were highly expressed in granulosa cells of healthy follicles and decreased during atresia. cFLIPS mRNA levels in granulosa cells were low and showed no change among the stages of follicular development, and its protein level was extremely low. We examined the changes in the localization of cFLIP mRNAs in pig ovaries by in situ hybridization and found that cFLIPL is abundant in granulosa cells of healthy follicles in comparison with those of atretic follicles. Immunohistochemical analyses demonstrated that the cFLIP protein is highly expressed in the granulosa cell of healthy follicles but weakly expressed in that of atretic follicles. We presumed that cFLIP, especially cFLIPL, plays an anti-apoptotic role in the granulosa cells of healthy follicles of pig ovaries, and that cFLIP could be a major survival factor that determines whether growth or atresia occurs in porcine follicles. © 2005 Wiley-Liss, Inc. [source]


Evidence for a role for anti-Müllerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2005
I. Gigli
Abstract The first critical transition in follicular development, the activation of primordial follicles to leave the pool of resting follicles and begin growth, is poorly understood, but it appears that the balance between inhibitory and stimulatory factors is important in regulating the exodus of follicles from the resting pool. There is evidence that anti-Müllerian hormone (AMH; also known as MIS) inhibits follicle activation in mice, but whether it plays a similar role in non rodent species is not known. When pieces of bovine ovarian cortex, rich in primordial follicles, are cultured in serum-free medium, most follicles initiate growth, but when cortical pieces are grafted beneath the chorioallantoic membrane (CAM) of chick embryos, follicle activation does not occur. Since embryonic chick gonads of both sexes produce and secrete high levels of AMH, the hypothesis that the AMH in the chick circulation inhibits follicle activation was tested. In Experiment 1, whole newborn mouse ovaries were grafted beneath the CAM (placed "in ovo") or cultured in vitro for 8 days. In vitro (or after 8 days in vivo) follicles activated and proceeded to the primary or secondary stage, but activation was suppressed in ovo. This inhibition was reversed if ovaries were removed from beneath the CAM and cultured in vitro. In contrast, when ovaries from mice null mutant for the AMH type II receptor were CAM-grafted in Experiment 2, follicle activation occurred in a similar fashion to activation in vitro. This finding strongly implicates AMH as the inhibitor of follicle activation in ovo. Since chick embryonic gonads are the source of circulating AMH, chicks were gonadectomized in Experiment 3, prior to grafting of pieces of bovine ovarian cortex beneath their CAMs. Bovine primordial follicles activated in the gonadectomized chicks, similar to the results for mice lacking the AMH type II receptor. Taken together these experiments provide strong evidence that AMH is the inhibitor of mouse follicle activation present in the circulation of embryonic chicks and provide indirect, and hence more tentative, evidence for AMH as an inhibitor of bovine follicle activation. © 2005 Wiley-Liss, Inc. [source]


Endocrine and Ovarian Responses to Prolonged Adrenal Stimulation at the Time of Induced Corpus Luteum Regression

REPRODUCTION IN DOMESTIC ANIMALS, Issue 6 2006
G Gabai
Contents The endocrine and ovarian responses to prolonged adrenal stimulation at the time of corpus luteum (CL) regression were studied in non-lactating non-pregnant Friesian cows. Cows were synchronized with two cloprostenol (PG) injections 11 days apart (second PG referred as time 0). Experiment 1 was carried out on five animals in two phases with a resting period in between. Between ,48 and 84 h, animals received 12 injections of either saline (CTR) or adrenocorticotrophic hormone (ACTH) agonist (Synacthen; SYN) every 12 h. Cortisol (C), progesterone (P4), oestradiol (E2) and LH were analysed in the blood samples collected every 8,12 h between days ,3 and 4. Pulsatile LH release was studied 4 h before and 4 h after naloxone administration beginning at 96 h. Experiment 2 was carried out on four cows in a cross-over experimental design (two phases, with a resting period in between). Treatments were performed by administering either saline (CTR) or Synacthen (SYN) every 12 h between ,36 and 24 h. The concentrations of C, P4 and E2 were measured in blood plasma every 4,12 h from days ,3 to 3, then every day from days 5 to 9. In both experiments, ovaries were examined by ultrasonography every 1,3 days. ACTH administration induced a significant increase (p < 0.001) of plasma C lasting for 7 days (experiment 1), and for 3,4 days (experiment 2). Plasma C returned to baseline levels within 6 days (expt 1) or 36 h (expt 2) after treatment interruption. During the SYN phase, LH pre-ovulatory surge was not detectable. During the CTR phase, naloxone administration induced a significant increase (p < 0.05) of average LH concentrations that was not evident during the SYN phase. The dominant follicle development was retarded and mean plasma E2 concentrations were significantly lower during the SYN phase (p < 0.01). Luteolysis was completed within 2 days. However, P4 decline between 0 and 4 h was slower (p < 0.01) during the SYN phase. Our results indicate that, under prolonged adrenal stimulation, follicular development is delayed and LH release is impaired, which are independent of CL function. [source]


Developing Ovarian Follicles Inhibit the Endotoxin-Induced Glomerular Inflammatory Reaction in Pseudopregnant Rats

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 5 2004
Marijke M. Faas
Problem:, We tested the hypothesis that developing ovarian follicles produce factors inhibiting the endotoxin induced inflammatory response. Method of study:, Pseudopregnant rats were treated with FSH to induced follicular development (FSH-rats). For control we used untreated pseudopregnant rats (PSP-rats) and rats in the follicular phase of the ovarian cycle (C-rats). All rats were infused with either saline or endotoxin. Three days after the infusion rats were sacrificed and kidney specimens were snapfrozen. Cryostat kidney sections were stained for the presence of monocytes, granulocytes, CD11a- and CD11b-positive cells and for ICAM-1 expression. Results:, The results show that induction of follicular development in pseudopregnant rats inhibited glomerular infiltration of monocytes and CD11b+ cells, while it did not affect the other parameters, i.e. glomerular granulocyte number, CD11a+ cells and glomerular ICAM-1 expression. Conclusion:, Developing ovarian follicles produce factors inhibiting monocyte responses to endotoxin. [source]


The Immunohistochemical Localization of Desmin and Smooth Muscle Actin in the Ovary of the African Giant Rat (Cricetomys gambianus) During the Oestrous Cycle

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2010
M.-C. Madekurozwa
Summary The aim of this study was to describe the distribution of smooth muscle actin and desmin immunopositive cells in the ovary of the giant rat. In addition, the study describes the morphological changes in the ovary of this species during the oestrous cycle. Healthy secondary and tertiary follicles dominated the ovary during pro-oestrus and oestrus. The theca externa of the tertiary follicles was immunopositive for smooth muscle actin, but immunonegative for desmin. Oestrus was also characterized by the presence of corpora haemorrhagica, which had an outer layer of smooth muscle actin immunopositive cells. Differentiating corpora lutea were observed during metoestrus. A further notable feature of the ovary during metoestrus was the presence of numerous atretic secondary and tertiary follicles. In the later stages of atresia, the follicles were infiltrated by desmin and smooth muscle actin immunopositive cells. Dioestrus was characterized by the presence of non-regressing and regressing corpora lutea. Immunostaining for smooth muscle actin was demonstrated in the enclosing layer of the corpora lutea, as well as in the tunica media of blood vessels within the corpora lutea. The results of this study have shown that morphological changes in the ovary of the giant rat during the oestrus cycle are similar to those of laboratory rodents. Furthermore, the results of the immunohistochemical study indicate that the perifollicular distribution of desmin and smooth muscle actin cells changes during follicular development and atresia. [source]