Folding Simulations (folding + simulation)

Distribution by Scientific Domains


Selected Abstracts


Protein folding simulations: From coarse-grained model to all-atom model

IUBMB LIFE, Issue 6 2009
Jian Zhang
Abstract Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure,stability,function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein,protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based G,-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL, the development of discrete MD and its application in studying the ,,, conformational conversion and oligomer assembling process, and the modeling of metal ion involved protein folding. © 2009 IUBMB IUBMB Life, 61(6): 627,643, 2009 [source]


Influence of temperature, friction, and random forces on folding of the B-domain of staphylococcal protein A: All-atom molecular dynamics in implicit solvent

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2007
Anna Jagielska
Abstract The influences of temperature, friction, and random forces on the folding of protein A have been analyzed. A series of all-atom molecular dynamics folding simulations with the Amber ff99 potential and Generalized Born solvation, starting from the fully extended chain, were carried out for temperatures from 300 to 500 K, using (a) the Berendsen thermostat (with no explicit friction or random forces) and (b) Langevin dynamics (with friction and stochastic forces explicitly present in the system). The simulation temperature influences the relative time scale of the major events on the folding pathways of protein A. At lower temperatures, helix 2 folds significantly later than helices 1 and 3. However, with increasing temperature, the folding time of helix 2 approaches the folding times of helices 1 and 3. At lower temperatures, the complete formation of secondary and tertiary structure is significantly separated in time whereas, at higher temperatures, they occur simultaneously. These results suggest that some earlier experimental and theoretical observations of folding events, e.g., the order of helix formation, could depend on the temperature used in those studies. Therefore, the differences in temperature used could be one of the reasons for the discrepancies among published experimental and computational studies of the folding of protein A. Friction and random forces do not change the folding pathway that was observed in the simulations with the Berendsen thermostat, but their explicit presence in the system extends the folding time of protein A. © 2007 Wiley Periodicals, Inc. J Comput Chem 2007 [source]


Computational design of proteins stereochemically optimized in size, stability, and folding speed

BIOPOLYMERS, Issue 2 2006
Sadhna Joshi
Abstract Artificial proteins potentially barrier-free in the folding kinetics are approached computationally under the guidance of protein-folding theories. The smallest and fastest folding globular protein triple-helix-bundle (THB) is so modified as to minimize or eliminate its presumed barriers in folding speed. As the barriers may reside in the ordering of either secondary or tertiary structure, the elements of both secondary and tertiary structure in the protein are targeted for prenucleation with suitable stereochemically constrained amino acid residues. The required elements of topology and sequence for the THB are optimized independently; first the topology is optimized with simulated annealing in polypeptides of highly simplified alphabet; next, the sequence in side chains is optimized using the standard inverse design methods. The resultant three best-adapted THBs, variable in topology and distinctive in sequences, are assessed by comparing them with a few benchmark proteins. The results of mainly molecular dynamics (MD) comparisons, undertaken in explicit water at different temperatures, show that the designed sequences are favorably placed against the chosen benchmarks as THB proteins potentially thermostable in the native folds. Folding simulation experiments with MD establish that the designed sequences are rapid in the folding of individual helices, but not in the evolution of tertiary structure; energetic cum topological frustrations remain but could be the artifacts of the starting conformations that were chosen in the THBs in the folding simulations. Overall, a practical high-throughput approach for de novo protein design has been developed that may have fruitful application for any type of tertiary structure. © 2006 Wiley Periodicals, Inc. Biopolymers 83: 122,134, 2006 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Structural Models and Binding Site Prediction of the C-terminal Domain of Human Hsp90: A New Target for Anticancer Drugs

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2008
Miriam Sgobba
Heat shock protein 90 is a valuable target for anticancer drugs because of its role in the activation and stabilization of multiple oncogenic signalling proteins. While several compounds inhibit heat shock protein 90 by binding the N-terminal domain, recent studies have proved that the C-terminal domain is important for dimerization of the chaperone and contains an additional binding site for inhibitors. Heat shock protein 90 inhibition achieved with molecules binding to the C-terminal domain provides an additional and novel opportunity to design and develop drugs. Therefore, for the first time, we have investigated the structure and the dynamic behaviour of the C-terminal domain of human heat shock protein 90 with and without the small-middle domain, using homology modelling and molecular dynamics simulations. In addition, secondary structure predictions and peptide folding simulations proved useful to investigate a putative additional ,-helix located between H18 and ,20 of the C-terminal domain. Finally, we used the structural information to infer the location of the binding site located in the C-terminal domain by using a number of computational tools. The predicted pocket is formed by two grooves located between helix H18, the loop downstream of H18 and the loop connecting helices H20 and H21 of each monomer of the C-terminal domain, with only two amino acids contributing from each middle domain. [source]