Fold-and-thrust Belt (fold-and-thrust + belt)

Distribution by Scientific Domains


Selected Abstracts


Contribution of different kinematic models and a complex Jurassic stratigraphy in the construction of a forward model for the Montagna dei Fiori fault-related fold (Central Apennines, Italy)

GEOLOGICAL JOURNAL, Issue 5-6 2010
L. Di Francesco
Abstract The Montagna dei Fiori has received attention from geologists over the past decades because of both its Jurassic stratigraphy and its complex present-day structure. The latter is the result of multiple phases of deformation, from the Early Jurassic, during the opening of the Tethyan Ocean, to Neogene evolution of the Apennines fold-and-thrust belt. In this paper, we present a new stratigraphic interpretation of the Jurassic palaeogeography, based on a new geological mapping project in the area. Using this new stratigraphy, we constructed two forward models, using a combination of different fault/fold interactions, in order to unravel the kinematic evolution of the Montagna dei Fiori fault-related fold. The first model was constructed manually using the fault-bend and fault-propagation theories from an initial configuration which included previous extensional features, whereas the second model was constructed using the software 2DMove (Midland Valley) using the fault-bend and trishear fault-propagation folding theories and starting from a layer-cake stratigraphy. Both forward models involved the same main steps and provided a reasonable geological simulation of the geometry of the Montagna dei Fiori structure. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Triassic metasedimentary successions across the boundary between the southern Apennines and the Calabrian Arc (northern Calabria, Italy)

GEOLOGICAL JOURNAL, Issue 2 2005
A. Iannace
Abstract The boundary area between the Apenninic fold-and-thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well-bedded metalimestones and bioturbated marly limestones that correlate with Ladinian,Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta-arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform-margin dolomites of Norian,Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well-bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian,Liassic beds in nearby areas. Several pieces of evidence of post-metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW-directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian,Carnian times, from (i) a coastal, mixed siliciclastic,carbonate,evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd. [source]


NEOGENE TECTONIC HISTORY OF THE SUB-BIBANIC AND M'SILA BASINS, NORTHERN ALGERIA: IMPLICATIONS FOR HYDROCARBON POTENTIAL

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2007
H. L. Kheidri
The southern Bibans region in northern Algeria is located in the external zone of the Tell fold-and-thrust belt. Field observations in this area together with seismic data integrated with previous studies provide evidence for a number of Tertiary deformation phases. Late Eocene Atlassic deformation was followed by Oligocene (?)-Aquitanian-Burdigalian compression, which was associated with the development of a foreland basin in front of a southerly-propagating thrust system. Gravity-driven emplacement of the Tellian nappes over the basin margin probably occurred during the Langhian-Serravallian-Tortonian. The Hodna Mountains structural culmination developed during the Miocene-Pliocene. Analysis of brittle structures points to continued north-south shortening during the Neogene, consistent with convergence between the African and Eurasian Plates. The unconformably underlying Mesozoic-Cenozoic autochthonous sequence in this area contains two potential source rock intervals: Cenomanian-Turonian and Eocene. Reservoir rocks include Lower Cretaceous siliciclastics and Upper Cretaceous to Palaeogene carbonates. Structural style has controlled trap types. Thus traps in the Tell fold-and-thrust belt are associated with folds, whereas structural traps in the Hodna area are associated with reactivated normal faults. In the latter area, there is also some evidence for base-Miocene stratigraphic traps. [source]


FAULT-RELATED SOLUTION CLEAVAGE IN EXPOSED CARBONATE RESERVOIR ROCKS IN THE SOUTHERN APENNINES, ITALY

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2001
A. Billi
The deformation associated with a number of kilometre-scale strike-slip fault zones which cut through outcropping carbonate rocks in the Southern Apennines was investigated at regional and outcrop scales. These faults trend roughly east-west and were studied at the Gargano Promontory on the Adriatic Coast (in the Apulian foreland) and in the Matese Mountains, about 120 km to the west (within the Apenninic fold-and-thrust belt). The fault zones are 200,300 m wide and typically comprise a core surrounded by a damage zone. Within fault cores, fault rocks (gouges and cataclasites) typically occur along master slip planes; in damage zones, secondary slip planes and solution cleavage are the most important planar discontinuities. The protolith carbonates surrounding the fault zone at Gargano show little deformation, but they are fractured in the Matese Mountains as a result of an earlier thrust phase. Cleavage surfaces in the damage zone of the studied faults are interpreted to be fault-propagation structures. Our field data indicate that cleavage-fault intersection lines are parallel to the normals of fault slip-vectors. The angle between a fault plane and the associated cleavage was found to be fairly constant (c. 40") at different scales of observation. Finally, the spacing of the solution cleavage surfaces appeared in general to be regular (with a mean of about 22 mm), although it was found to decrease slightly near a fault plane. These results are intended to provide a basis for predicting the architecture of fault zones in buried carbonate reservoirs using seismic reflection and borehole data. [source]


TIMING AND MODES OF DEFORMATION IN THE WESTERN SICILIAN THRUST SYSTEM, SOUTHERN ITALY

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2001
L. Tortorici
Imbricate units in the western Sicilian fold-and-thrust belt originated on the southern continental margin of Neotethys, and were deformed during the Neogene-Recent in response to convergence between the African and European Plates. Neogene-Pleistocene synorogenic sediments, deposited in flexural foredeeps and satellite piggy-back basins, contain a record of the belt's evolution. Progressive migration of the thrust front southwards into the foreland has been documented, beginning in the Tortonian and continuing to the present-day particularly in western parts of the belt. In the eastern part, activity on Quaternary strike-slip fault zones has produced asymmetric flower structures and other interference structures. In this paper, we present two regional sections across the western Sicilian foreland-thrust belt system. These structural cross-sections extend down as far as the top of the Hercynian basement and integrate our field observations with previously-acquired well log, magnetic and seismic data. We show that complex interactions between the foreland-migrating thrust belt, which developed between the Late Miocene and the Pleistocene, and Pleistocene strike-slip faults led to the development of structural traps which constitute potential targets for hydrocarbon exploration. [source]


Provenance of siliciclastic and hybrid turbiditic arenites of the Eocene Hecho Group, Spanish Pyrenees: implications for the tectonic evolution of a foreland basin

BASIN RESEARCH, Issue 2 2010
M. A. Caja
ABSTRACT The Eocene Hecho Group turbidite system of the Aínsa-Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity-bounded tectonostratigraphic units (TSU), consisting of quartz-rich and feldspar-poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU-2, whereas calclithites and hybrid arenites occur in the overlying TSU-3, TSU-4 and TSU-5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold-and-thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz-rich and feldspar-poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar-rich and, to some extent, rock fragments-rich sandstones), thrust-and-fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono-stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins. [source]


Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia

BASIN RESEARCH, Issue 2 2006
Cornelius Eji Uba
ABSTRACT Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ,27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge-backbulge depocentre. (2) The overlying ,14,7 Ma-old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust-belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ,7,6 Ma-old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean-derived sediment in the medial-foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge-shaped, westerly sourced, thickening- and coarsening-upward clastics of the (4) ,6,2.1 Ma-old Guandacay and (5) ,2.1 Ma-to-Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge-top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra- and Subandean fold-and-thrust belt. [source]


Migration velocity analysis for tilted transversely isotropic media

GEOPHYSICAL PROSPECTING, Issue 1 2009
Laxmidhar Behera
ABSTRACT Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold-and-thrust belts) and in subsalt exploration. Here, we introduce a methodology for P-wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters , and , and linearly varying symmetry-direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P-wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters , and , in the layer-stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry-axis direction is fixed and VP0 is known, the parameters kz, kx, , and , can be resolved from reflection data. It should be emphasized that estimation of , in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas. [source]