Home About us Contact | |||
Fourier-transform Infrared Spectra (fourier-transform + infrared_spectrum)
Selected AbstractsGeneration of Compositional-Gradient Structures in Biodegradable, Immiscible, Polymer Blends by Intermolecular Hydrogen-Bonding Interactions,ADVANCED FUNCTIONAL MATERIALS, Issue 10 2005B. Hexig Abstract A biodegradable, immiscible poly(butylenes adipate- co -butylenes terephthalate) [P(BA- co -BT)]/poly(ethylene oxide) (PEO) polymer blend film with compositional gradient in the film-thickness direction has been successfully prepared in the presence of a low-molecular-weight compound 4,4,-thiodiphenal (TDP), which is used as a miscibility-enhancing agent. The miscibilities of the P(BA- co -BT)/PEO/TDP ternary blend films and the P(BA- co -BT)/PEO/TDP gradient film were investigated by differential scanning calorimetry (DSC). The compositional gradient structure of the P(BA- co -BT)/PEO/TDP (46/46/8 w/w/w) film has been confirmed by microscopic mapping measurement of Fourier-transform infrared spectra and dynamic mechanical thermal analysis. We have developed a new strategy for generating gradient-phase structures in immiscible polymer-blend systems by homogenization, i.e., adding a third agent that can enhance the miscibility of the two immiscible polymers through simultaneous formation of hydrogen bonds with two component polymers. [source] Synthesis and Electrorheological Characterization of Polyaniline/Barium Titanate Hybrid SuspensionMACROMOLECULAR SYMPOSIA, Issue 1 2006Fei Fei Fang Abstract As organic/inorganic composites having attracted much attention due to their heterogeneous physical properties, conducting polyaniline (PANI) and barium titanate (BaTiO3) which possesses large electronic resistance and excellent dielectric strength, were utilized to synthesize PANI/BaTiO3 hybrid which is applicable for an electrorheological (ER) material via ,in-situ' oxidative polymerization. Physical properties of the obtained PANI/BaTiO3 composites were characterized via Fourier-transform infrared spectra (FT-IR), thermogravimetry analysis (TGA), and scanning electron microscopy (SEM). The ER behaviors were investigated via a rotational rheometer, and their shear stresses were fitted using our previously proposed rheological equation of state. [source] A rapid method for assessing lipid:protein and detergent:protein ratios in membrane-protein crystallizationACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2003Corrie J. B. DaCosta A simple procedure for rapidly measuring lipid:protein ratios and detergent concentrations at different stages of the solubilization, purification and crystallization of membrane proteins has been developed. Fourier-transform infrared spectra recorded from 10,µl aliquots of solution using a single-bounce diamond-attenuated total reflectance apparatus exhibit characteristic bands arising from the vibrations of lipid, protein and detergent. Lipid:protein molar ratios as low as 5:1 (for a protein with a molecular weight of 300,kDa) are determined by comparing the ratio of the integrated intensity of the lipid ester carbonyl band near 1740,cm,1 with the protein amide I band near 1650,cm,1. Detergent concentrations at levels well below the critical micellar concentration of most detergents are determined by comparing the integrated intensities of the detergent vibrations, particularly in the 1200,1000,cm,1 region, with a standard curve. Protein amide I band-shape analysis provides insight into the effects of detergents on protein secondary structure. The importance of monitoring detergent concentration changes during simple procedures, such as the concentration of a membrane protein by ultrafiltration, is demonstrated. This analytical tool has been used to rapidly establish protocols for minimizing lipid and detergent levels in solubilized membrane-protein samples. [source] Nitridation of Silica to an ,-Silicon Nitride Nanorod Using NaNH2 in the Autoclave at 700°CJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2007Lingling Zhu ,-silicon nitride nanorods have been synthesized through solid-state reduction,nitridation of silica using NaNH2 as both a reductant and a nitriding reagent. X-ray powder diffraction patterns show that the products have a hexagonal phase with lattice parameters a=7.767 Å and c=5.630 Å. Transmission electron microscopy reveals that the as-synthesized products are pure nanorods with an average size about 30 nm in diameter and 400 nm in length. X-ray photoelectron spectra indicate that the molar ratio of Si/N is 2.988:4. Fourier-transform infrared spectrum yields a strong Si,N absorption at 926 cm,1 that may be a red shift due to size effect. [source] |