Home About us Contact | |||
Fluvial Geomorphology (fluvial + geomorphology)
Selected AbstractsFluvial Geomorphology and River ManagementGEOGRAPHICAL RESEARCH, Issue 3 2000I. Douglas Australian river landscapes offer many challenges for management. Much Australian river research is novel, but practical concerns have always had an influence on the research agenda. Australia's distinctive contributions to fluvial geomorphology include recognition of the great age of many fluvially eroded landscapes; understanding complex levee, terrace and valley fill sequences; analysing the impacts of rare major floods; interpreting the effects of impoundment, mining and urbanisation; and understanding the great anastomosing inland river systems. River restoration is now a major theme in the literature of river engineering, fluvial geomorphology and landscape design. Great achievements are occurring in geo-ecological river management and engineering. Changing people's thinking is becoming at least as important as gaining new scientific knowledge. The existing understanding needs to be more widely shared and enhanced by greater involvement with Asian countries where river management issues daily affect the lives of millions of people. [source] Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.FRESHWATER BIOLOGY, Issue 11 2003D. M. Walters Summary 1.,We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20,40 times stream width). 2.,Non-metric multidimensional scaling (NMDS) identified 85% of the among-site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter-cyprinid-redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3.,Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60,0.82) by reach-level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4.,Our results contrast with the ,River Continuum Concept' which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ,Process Domains Concept', which argues that local-scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities. [source] TOWARDS A UNIFORM CONCEPT FOR THE COMPARISON AND EXTRAPOLATION OF ROCKWALL RETREAT AND ROCKFALL SUPPLYGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2007MICHAEL KRAUTBLATTER ABSTRACT. Rates of rockwall retreat and rockfall supply are fundamental components of sediment budgets in steep environments. However, the standard procedure of referencing rockwall retreat rates using only lithology is inconsistent with research findings and results in a variability that exceeds three orders of magnitude. The concept proposed in this paper argues that the complexity inherent in rockfall studies can be reduced if the stages of (i) backweathering, (ii) filling and depletion of intermediate storage on the rock face and (iii) final rockfall supply onto the talus slopes are separated as these have different response functions and controlling factors. Backweathering responds to preweathering and weathering conditions whereas the filling and depletion of intermediate storage in the rock face is mainly a function of internal and external triggers. The noise apparent in backweathering rates and rockfall supply can be reduced by integrating the relevant controlling factors in the response functions. Simple conceptual models for the three stages are developed and are linked by a time-dependent ,rockfall delivery rate', which is defined as the difference between backweathering and rockfall supply, thus reflecting the specific importance of intermediate storage in the rock face. Existing studies can be characterized according to their ,rockfall delivery ratio', a concept similar to the ,sediment delivery ratio' used in fluvial geomorphology. Their outputs can be qualified as trigger-dependent rockfall supply rates or backweathering rates dependent on (pre-)weathering conditions. It is shown that the existing quantitative backweathering and rockfall supply models implicitly follow the proposed conceptual models and can be accommodated into the uniform model. Suggestions are made for how best to incorporate non-linearities, phase transitions, path dependencies and different timescales into rockfall response functions. [source] Fluvial Geomorphology and River ManagementGEOGRAPHICAL RESEARCH, Issue 3 2000I. Douglas Australian river landscapes offer many challenges for management. Much Australian river research is novel, but practical concerns have always had an influence on the research agenda. Australia's distinctive contributions to fluvial geomorphology include recognition of the great age of many fluvially eroded landscapes; understanding complex levee, terrace and valley fill sequences; analysing the impacts of rare major floods; interpreting the effects of impoundment, mining and urbanisation; and understanding the great anastomosing inland river systems. River restoration is now a major theme in the literature of river engineering, fluvial geomorphology and landscape design. Great achievements are occurring in geo-ecological river management and engineering. Changing people's thinking is becoming at least as important as gaining new scientific knowledge. The existing understanding needs to be more widely shared and enhanced by greater involvement with Asian countries where river management issues daily affect the lives of millions of people. [source] Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental EffectsGEOGRAPHY COMPASS (ELECTRONIC), Issue 3 2009Daniele Tonina Hyporheic exchange is the mixing of surface and shallow subsurface water through porous sediment surrounding a river and is driven by spatial and temporal variations in channel characteristics (streambed pressure, bed mobility, alluvial volume and hydraulic conductivity). The significance of hyporheic exchange in linking fluvial geomorphology, groundwater, and riverine habitat for aquatic and terrestrial organisms has emerged in recent decades as an important component of conserving, managing, and restoring riverine ecosystems. Here, we review the causes and environmental effects of hyporheic exchange, and provide a simple mathematical framework for examining the mechanics of exchange. A companion paper explores the potential effects of channel morphology on exchange processes and the hyporheic environments that may result in mountain basins (Buffington and Tonina 2009). [source] Geomorphology Fluid Flow Modelling: Can Fluvial Flow Only Be Modelled Using a Three-Dimensional Approach?GEOGRAPHY COMPASS (ELECTRONIC), Issue 1 2008R. J. Hardy The application of numerical models to gain insight into flow processes is becoming a prevalent research methodology in fluvial geomorphology. The advantage of this approach is that models are particularly useful for identifying emergent behaviour in the landscape where combinations of processes act over several scales. However, there are a wide range of available models and it is not always apparent that methodological approach should be chosen. The decision about the amount of process representation required needs to be balanced against both the spatial and temporal scales of interest. In this article, it is argued that in order to gain a complete, high resolution process understanding of flow within the fluvial system a full three-dimensional modelling approach with a complete physical basis is required. [source] Critical Evaluation of How the Rosgen Classification and Associated "Natural Channel Design" Methods Fail to Integrate and Quantify Fluvial Processes and Channel Response,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2007A. Simon Abstract:, Over the past 10 years the Rosgen classification system and its associated methods of "natural channel design" have become synonymous to some with the term "stream restoration" and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely adopted by governmental agencies, particularly those funding restoration projects. The purposes of this article are to present a critical review, highlight inconsistencies and identify technical problems of Rosgen's "natural channel design" approach to stream restoration. This paper's primary thesis is that alluvial streams are open systems that adjust to altered inputs of energy and materials, and that a form-based system largely ignores this critical component. Problems with the use of the classification are encountered with identifying bankfull dimensions, particularly in incising channels and with the mixing of bed and bank sediment into a single population. Its use for engineering design and restoration may be flawed by ignoring some processes governed by force and resistance, and the imbalance between sediment supply and transporting power in unstable systems. An example of how C5 channels composed of different bank sediments adjust differently and to different equilibrium morphologies in response to an identical disturbance is shown. This contradicts the fundamental underpinning of "natural channel design" and the "reference-reach approach." The Rosgen classification is probably best applied as a communication tool to describe channel form but, in combination with "natural channel design" techniques, are not diagnostic of how to mitigate channel instability or predict equilibrium morphologies. For this, physically based, mechanistic approaches that rely on quantifying the driving and resisting forces that control active processes and ultimate channel morphology are better suited as the physics of erosion, transport, and deposition are the same regardless of the hydro-physiographic province or stream type because of the uniformity of physical laws. [source] Understanding ,hot-spot' problems in catchments: the need for scale-sensitive measures and mechanisms to secure effective solutions for river management and conservationAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010Malcolm Newson Abstract 1.Regulatory progress in controlling point sources of chemical river pollution has progressively thrown the attention of public policy towards anthropogenic physical impacts, many of which are scaled to the catchment via the runoff/sediment system. At the same time, concern over diffuse chemical pollution has reinforced ,catchment consciousness': land-use and land-management planning and control must be considered to conserve or restore river ecosystem integrity. 2.The scientific, political and legal elements of this scale change are, however, complex and uncertain: ,myths' abound. Landscape-scale consideration of ,pressures' suggests an unequal distribution of regulatory costs and benefits and large uncertainties in the evidence from a ,land-use hydrology' and fluvial geomorphology perspective. 3.,Hydrological connectivity' brings together a number of knowledge themes about catchment spatial organization which facilitate applying mitigation measures to much smaller areas, helping to offset uncertainty and reduce costs. 4.Instead of blanket ,remedies', more practical use is needed of process evidence from hydrology and fluvial geomorphology; this tends to suggest that ,hot-spots' dominate risks and impacts of factors such as leaching, surface flow generation and silt entrainment. 5.Set in a realistic policy framework, from strategic spatial planning to grant-aided best practice, a ,catchment acupuncture' approach to measures provides a cost-effective contribution to improving ecological status and may also increase resilience to the impacts of climate change. 6.The European Union's Water Framework Directive (WFD) encourages ,joined-up thinking' on this issue but it remains to be seen whether spatial scales, structures and concepts already enshrined in the WFD and the relevant UK national policies for land use and nature conservation can be exploited to permit the much-needed practical uptake of this new riparianism. Copyright © 2010 John Wiley & Sons, Ltd. [source] Integrating ecology with hydromorphology: a priority for river science and managementAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2009I.P. Vaughan Abstract 1.The assessment of links between ecology and physical habitat has become a major issue in river research and management. Key drivers include concerns about the conservation implications of human modifications (e.g. abstraction, climate change) and the explicit need to understand the ecological importance of hydromorphology as prescribed by the EU's Water Framework Directive. Efforts are focusing on the need to develop ,eco-hydromorphology' at the interface between ecology, hydrology and fluvial geomorphology. Here, the scope of this emerging field is defined, some research and development issues are suggested, and a path for development is sketched out. 2.In the short term, major research priorities are to use existing literature or data better to identify patterns among organisms, ecological functions and river hydromorphological character. Another early priority is to identify model systems or organisms to act as research foci. In the medium term, the investigation of pattern,processes linkages, spatial structuring, scaling relationships and system dynamics will advance mechanistic understanding. The effects of climate change, abstraction and river regulation, eco-hydromorphic resistance/resilience, and responses to environmental disturbances are likely to be management priorities. Large-scale catchment projects, in both rural and urban locations, should be promoted to concentrate collaborative efforts, to attract financial support and to raise the profile of eco-hydromorphology. 3.Eco-hydromorphological expertise is currently fragmented across the main contributory disciplines (ecology, hydrology, geomorphology, flood risk management, civil engineering), potentially restricting research and development. This is paradoxical given the shared vision across these fields for effective river management based on good science with social impact. A range of approaches is advocated to build sufficient, integrated capacity that will deliver science of real management value over the coming decades. Copyright © 2007 John Wiley & Sons, Ltd. [source] |