Home About us Contact | |||
Fluorinated Monomer (fluorinated + monomer)
Selected AbstractsUse of fluorinated maleimide and telechelic bismaleimide for original hydrophobic and oleophobic polymerized networksJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2008Aurélien Soules Abstract The syntheses of original fluorinated maleimide and telechelic bismaleimide bearing C6F13 and C6F12 groups, respectively, and their use as reactive additives in photopolymerizable formulations of telechelic poly(propylene glycol) bismaleimide (PPGBMI) are presented. Fluorinated maleimide was synthetized in five steps in 63% overall yield from C6F13C2H4I precursor, whereas the fluorinated bismaleimide was prepared in six steps in 14% overall yield from IC6F12I. These latter led to fluorinated azido and diazido intermediates that were reduced into the fluorinated amine and diamines in two steps. The condensation of amine and diamine onto maleic anhydride offered an amic acid and a diamic acid, which were subsequently cyclized into fluorinated maleimide and bismaleimide. Formulations of telechelic PPGBMI containing a low concentration of these fluorinated maleimide and bismaleimide were UV cured and the surface properties of the resulting films were investigated. A deep modification of the surface properties was noted when the monomaleimide was used. In all the cases, a selective enrichment of the fluorinated monomer at the film surface was observed. The dependence of the surface properties on the fluorinated maleimide and bismaleimide concentrations were also studied, and showed an asymptotic behavior of the contact angle with only 1.5 wt % of fluorinated maleimide additive, whatever the conditions. This monomaleimide led to better hydrophobic and oleophobic properties of the resulting material than that containing the telechelic one. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3214,3228, 2008 [source] Copolymerization of Fluorinated Monomers with Hydrophilic Monomers in Aqueous Solution in Presence of CyclodextrinMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006Oliver Kretschmann Abstract Summary: New fluorinated copolymers were synthesized by copolymerization of 1H,1H,2H,2H- perfluorodecyl methacrylate (1) with hydrophilic comonomers methacrylic acid (3), 2-acrylamido-2-methylpropane sulfonic acid (6), 3-trimethylammonium propyl methacrylamide chloride (7) and N,N -dimethylmethacrylamidopropyl- N -3-sulfopropylammoniumbetaine (8). The reaction was carried out in water using randomly methylated , -cyclodextrin (RAMEB) for solubilization of the fluorinated monomer by forming a host-guest complex (1a). Polymerization kinetics were investigated and copolymerization parameters were determined. Additionally, a RAMEB complex of tert -butyl methacrylate (2a) was copolymerized with 1a in water. For comparison, copolymerization of the uncomplexed monomers 1 and 2 were carried out in organic solvents. Evaluation of copolymerization kinetics and parameters showed significant differences in the relative reactivities of the free monomers and the monomer-RAMEB complexes. [source] Controlled synthesis of fluorinated copolymers with pendant sulfonatesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2008Ivaylo Dimitrov Abstract Novel, fluorinated copolymers with different architectures bearing sulfopropyl groups were synthesized in a three-step procedure. The first step involved atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers followed by two modification reactions performed on the polymer chain: demethylation and sulfopropylation. As a result two types of fluorinated copolymers were obtained. The first one was synthesized by ATRP of 2,3,5,6-tetrafluoro-4-methoxystyrene (TFMS). After the modification steps copolymers with randomly distributed sulfopropyl groups along the backbone were obtained. The second type of copolymers has diblock architecture with one of the blocks being sulfopropylated. They were synthesized via ATRP of 2,3,4,5,6-pentafluorostyrene (FS) initiated by a PTFMS-macroinitiator followed by demethylation and sulfopropylation of the TFMS-block. The copolymers were characterized by size-exclusion chromatography, FTIR, and 1H NMR spectroscopy. Their thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7827,7834, 2008 [source] Synthesis and polymerization of fluorinated monomers bearing a reactive lateral group.JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2003Abstract The radical copolymerization in solution of vinylidene fluoride (VDF; or 1,1-difluoroethylene) with methyl 1,1-dihydro-4,7-dioxaperfluoro-5,8-dimethyl non-1-enoate (MDP) initiated by di- tert -butyl peroxide is presented. Six copolymerization reactions were investigated with initial [VDF]0/[MDP]0 molar ratios of 35/65 to 80/20. Both of these comonomers copolymerized in this range of copolymerization. Moreover, these comonomers homopolymerized separately under these conditions. The copolymer compositions of these random copolymers were calculated by means of 19F NMR spectroscopy, which allowed the quantification of the respective amounts of each monomeric unit in the copolymers. The Tidwell,Mortimer method was used for the assessment of the reactivity ratios (ri) of both comonomers, which showed a higher incorporation of MDP in the copolymers (rMDP = 2.41 ± 2.28 and rVDF = 0.38 ± 0.21 at 120 °C). The Alfrey,Price Q and e values of the trifluoroallyl monomer MDP were calculated to be 0.024 (from QVDF = 0.008) or 0.046 (from QVDF = 0.015) and 0.70 (vs eVDF = 0.40) or 0.80 (vs eVDF = 0.50), respectively, indicating that MDP was an electron-accepting monomer. The thermal properties of these fluorinated copolymers were also determined. Except for those containing a high amount of VDF, the copolymers were amorphous. Each showed one glass-transition temperature (Tg) only, and with known laws of Tg's, Tg of the MDP homopolymer was assessed. It was compared to that obtained from the direct radical homopolymerization of MDP and discussed. Indeed, these two values were close (Tg = ,3 °C). Thermogravimetric analyses were performed, and they showed that the copolymers were rather thermostable because the thermal degradation occurred at 280 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3109,3121, 2003 [source] |