Fluid Percussion Injury (fluid + percussion_injury)

Distribution by Scientific Domains


Selected Abstracts


Importance of calcitonin gene-related peptide, adenosine and reactive oxygen species in cerebral autoregulation under normal and diseased conditions

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2004
Hwa Kyoung Shin
Summary 1.,Mechanisms regulating cerebral circulation, including autoregulation of cerebral blood flow (CBF), have been widely investigated. Vasodilators such as nitric oxide, prostacyclin, calcitonin gene-related peptide (CGRP) and K+ channel openers are well known to have important roles in the physiological and pathophysiological control of CBF autoregulation. In the present review, the focus is on the mechanism(s) of altered CBF autoregulation after traumatic brain injury and subarachnoid haemorrhage (SAH) and on the effect of adenovirus-mediated transfer of Cu/Zn superoxide dismutase (SOD)-1 in amelioration of impaired CBF autoregulation. 2.,The roles of CGRP and adenosine are particularly emphasized, both being implicated in the autoregulatory vasodilation of the pial artery in response to hypotension. 3.,After fluid percussion injury, production of NADPH oxidase-derived superoxide anion and activation of tyrosine kinase links the inhibition of K+ channels to impaired autoregulatory vasodilation in response to acute hypotension and alterations in CBF autoregulation in rat pial artery. 4.,Subarachnoid haemorrhage during the acute stage causes an increase in NADPH oxidase-dependent superoxide formation in cerebral vessels in association with activated tyrosine phosphorylation-coupled increased expression of gp91phox mRNA and membrane translocation of Rac protein, thereby resulting in a significant reduction of autoregulatory vasodilation. 5.,Fluid percussion injury and SAH-induced overproduction of superoxide anion in cerebral vessels contributes to the impairment of CBF autoregulation and administration of recombinant adenovirus-mediated transfer of the Cu/Zn SOD-1 gene effectively ameliorates the impairment of CBF autoregulation of the pial artery. [source]


Mechanisms underlying the inability to induce area CA1 LTP in the mouse after traumatic brain injury

HIPPOCAMPUS, Issue 6 2006
E. Schwarzbach
Abstract Traumatic brain injury (TBI) is a significant health issue that often causes enduring cognitive deficits, in particular memory dysfunction. The hippocampus, a structure crucial in learning and memory, is frequently damaged during TBI. Since long-term potentiation (LTP) is the leading cellular model underlying learning and memory, this study was undertaken to examine how injury affects area CA1 LTP in mice using lateral fluid percussion injury (FPI). Brain slices derived from FPI animals demonstrated an inability to induce LTP in area CA1 7 days postinjury. However, area CA1 long-term depression could be induced in neurons 7 days postinjury, demonstrating that some forms of synaptic plasticity can still be elicited. Using a multidisciplined approach, potential mechanisms underlying the inability to induce and maintain area CA1 LTP were investigated. This study demonstrates that injury leads to significantly smaller N -methyl- D -aspartate potentials and glutamate-induced excitatory currents, increased dendritic spine size, and decreased expression of ,-calcium calmodulin kinase II. These findings may underlie the injury-induced lack of LTP and thus, contribute to cognitive impairments often associated with TBI. Furthermore, these results provide attractive sites for potential therapeutic intervention directed toward alleviating the devastating consequences of human TBI. © 2006 Wiley-Liss, Inc. [source]


NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat

JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
Chunlong Zhong
Abstract Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N -acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI. [source]


Neuroprotection with caspase-9 inhbition against in vitro and in vivo trauma

JOURNAL OF NEUROCHEMISTRY, Issue 2002
R. A. Wallis
Objective:, To evaluate the neuroprotective efficacy of the cell-permeable caspase-9 inhibitor, LEHD-CHO, against in vitro and in vivo traumatic neuronal injury. Methods:, The neuroprotective potential of LEHD-CHO was assessed in vitro using rat hippocampal slices. CA1 orthodromic and antidromic population spike (PS) amplitude was monitored before and after fluid percussion injury in slices treated with or without LEHD-CHO. Final recovery of PS amplitude was assessed 95 min after trauma. Studies of in vivo neuroprotection with LEHD-CHO utilized a model of controlled cortical impact (CCI). Rats were given either LEHD-CHO (10 nmol icv) or an equal volume of vehicle at 5 min following CCI. Rats were perfused 24 h after CCI and brains were processed for histological examination. Results:, LEHD-CHO provided significant protection against loss of CA1 evoked response after fluid percussion. The EC50 for LEHD-CHO protection of CA1 orthodromic and antidromic PS amplitude against trauma was 2.1 ,m and 2.3 ,m. Protection extended to preservation of LTP after trauma. In vivo treatment with LEHD-CHO significantly decreased the appearance of eosinophilic cells in the CA1 region after CCI from 131 ± 23 cells in vehicle-treated animals to 24 ± 5 in LEHD-CHO treated animals. Extensive labelling with TUNEL staining was seen in vehicle-treated animals, whereas sections from LEHD-CHO treated animals demonstrated little staining. Conclusions:, These findings indicate that the caspase 9 inhibitor LHED-CHO provides concentration-dependent protection against in vitro CA1 neuronal injury, which extends to protection against in vivo CA1 injury from CCI. They further suggest that inhibition of caspase 9 may be a useful treatment strategy for traumatic brain injury. Acknowledgement:, Supported by VA Research and UCLA BIRC. [source]


Transient versus prolonged hyperlocomotion following lateral fluid percussion injury in mongolian gerbils

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2006
Shihong Li
Abstract Posttraumatic hyperactivity is a neurobehavioral symptom commonly seen in patients after traumatic brain injury (TBI). No useful animal model has yet been established for evaluation of this important symptom. We induced either mild (MILD, 0.7,0.9 atm) or moderate (MOD, 1.3,1.6 atm) lateral fluid percussion injury (LFPI) in Mongolian gerbils. Open-field and T-maze tests were used during a 7-day period after the trauma. All animals were perfusion fixed for histopathological examinations. Transient locomotor hyperactivity was found with a peak at 6 hr after injury in the MILD animals, whereas MOD animals showed prolonged and severe hyperlocomotion throughout the 7-day posttrauma period (P < 0.0001). Interestingly, the temporal profile of the posttraumatic hyperactivity was similar to that of the working memory deficit in both injury groups. Histological examination revealed significant neural tissue damages, including cortical necrosis, white matter rarefaction, and neuronal loss in the hippocampus in the ipsilateral hemisphere of the MOD animals, vs. only negligible changes in the MILD animals. Correlation analysis revealed that the volume of white matter lesions was significantly correlated with both posttraumatic hyperactivity (r = 0.591, P < 0.01) and working memory deficit (r = ,0.859, P < 0.0001). Taken together, our findings confirm the successful reproduction of posttraumatic hyperactivity following experimental TBI. The posttraumatic hyperlocomotion probably shared pathomechanisms common to those of cognitive dysfunction caused by LFPI, supporting the speculation from previous studies that some neurobehavioral abnormities intimately correlate with TBI-induced cognitive dysfunction. Histopathologically, significant involvement of white matter damage in the posttraumatic functional deficits was indicated. © 2006 Wiley-Liss, Inc. [source]


Importance of calcitonin gene-related peptide, adenosine and reactive oxygen species in cerebral autoregulation under normal and diseased conditions

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2004
Hwa Kyoung Shin
Summary 1.,Mechanisms regulating cerebral circulation, including autoregulation of cerebral blood flow (CBF), have been widely investigated. Vasodilators such as nitric oxide, prostacyclin, calcitonin gene-related peptide (CGRP) and K+ channel openers are well known to have important roles in the physiological and pathophysiological control of CBF autoregulation. In the present review, the focus is on the mechanism(s) of altered CBF autoregulation after traumatic brain injury and subarachnoid haemorrhage (SAH) and on the effect of adenovirus-mediated transfer of Cu/Zn superoxide dismutase (SOD)-1 in amelioration of impaired CBF autoregulation. 2.,The roles of CGRP and adenosine are particularly emphasized, both being implicated in the autoregulatory vasodilation of the pial artery in response to hypotension. 3.,After fluid percussion injury, production of NADPH oxidase-derived superoxide anion and activation of tyrosine kinase links the inhibition of K+ channels to impaired autoregulatory vasodilation in response to acute hypotension and alterations in CBF autoregulation in rat pial artery. 4.,Subarachnoid haemorrhage during the acute stage causes an increase in NADPH oxidase-dependent superoxide formation in cerebral vessels in association with activated tyrosine phosphorylation-coupled increased expression of gp91phox mRNA and membrane translocation of Rac protein, thereby resulting in a significant reduction of autoregulatory vasodilation. 5.,Fluid percussion injury and SAH-induced overproduction of superoxide anion in cerebral vessels contributes to the impairment of CBF autoregulation and administration of recombinant adenovirus-mediated transfer of the Cu/Zn SOD-1 gene effectively ameliorates the impairment of CBF autoregulation of the pial artery. [source]