Fluid Flow (fluid + flow)

Distribution by Scientific Domains

Kinds of Fluid Flow

  • compressible fluid flow
  • incompressible fluid flow
  • non-newtonian fluid flow
  • pulsatile fluid flow

  • Terms modified by Fluid Flow

  • fluid flow characteristic
  • fluid flow problem
  • fluid flow rate

  • Selected Abstracts


    COMPUTATIONAL FLUID DYNAMICS MODELING OF FLUID FLOW IN HELICAL TUBES

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 2 2002
    T. KORAY PALAZOGLU
    ABSTRACT The effect of different processing parameters on the degree of mixing and axial and radial pressure drops, during single-phase flow in helical tubes was investigated by using CFD software. Correlations were developed to calculate axial and radial pressure drops, and also the ratio of maximum to average fluid velocities. All of these quantities were found to be dependent on curvature ratio (ratio of tube diameter to coil diameter). Flow visualization experiments were performed to assess the degree of mixing in different configurations. At identical conditions, the degree of mixing was higher in the system with the large curvature ratio, which is in agreement with the simulation results. A minimum ratio of maximum to average fluid velocities of 1.61 was achieved, representing a 20% reduction in hold tube length for Newtonian fluid in laminar flow. [source]


    FLUID FLOW IN DISTENSIBLE VESSELS

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 2 2009
    CD Bertram
    SUMMARY 1Flow in single vascular conduits is reviewed, divided into distended and deflated vessels. 2In distended vessels with pulsatile flow, wave propagation and reflection dominate the spatial and temporal distribution of pressure, determining the shape, size and relative timing of measured pressure waveforms, as well as the instantaneous pressure gradient everywhere. Considerable research has been devoted to accessing the information on pathological vascular malformations contained in reflected waves. Slow waves of contraction of vessel wall muscle, responsible for transport of oesophageal, ureteral and gut contents, have also been modelled. 3The pressure gradient in a vessel drives the flow. Flow rate can be predicted both analytically and numerically, but analytical theory is limited to idealized geometry. The complex geometry of biological system conduits necessitates computation instead. Initially limited to rigid boundaries, numerical methods now include fluid,structure interaction and can simultaneously model solute transport, thus predicting accurately the environment of the mechanosensors and chemosensors at vessel surfaces. 4Deflated vessels display all phenomena found in distended vessels, but have additional unique behaviours, especially flow rate limitation and flow-induced oscillation. Flow rate limitation is widespread in the human body and has particular diagnostic importance in respiratory investigation. Because of their liquid lining, the pulmonary airways are also characterized by important two-phase flows, where surface tension phenomena create flows and determine the patency and state of collapse of conduits. 5Apart from the vital example of phonation, sustained self-excited oscillation is largely avoided in the human body. Where it occurs in snoring, it is implicated in the pathological condition of sleep apnoea. [source]


    Temporal accuracy analysis of phase change convection simulations using the JFNK-SIMPLE algorithm

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2007
    Katherine J. Evans
    Abstract The incompressible Navier,Stokes and energy conservation equations with phase change effects are applied to two benchmark problems: (1) non-dimensional freezing with convection; and (2) pure gallium melting. Using a Jacobian-free Newton,Krylov (JFNK) fully implicit solution method preconditioned with the SIMPLE (Numerical Heat Transfer and Fluid Flow. Hemisphere: New York, 1980) algorithm using centred discretization in space and three-level discretization in time converges with second-order accuracy for these problems. In the case of non-dimensional freezing, the temporal accuracy is sensitive to the choice of velocity attenuation parameter. By comparing to solutions with first-order backward Euler discretization in time, it is shown that the second-order accuracy in time is required to resolve the fine-scale convection structure during early gallium melting. Qualitative discrepancies develop over time for both the first-order temporal discretized simulation using the JFNK-SIMPLE algorithm that converges the nonlinearities and a SIMPLE-based algorithm that converges to a more common mass balance condition. The discrepancies in the JFNK-SIMPLE simulations using only first-order rather than second-order accurate temporal discretization for a given time step size appear to be offset in time. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Numerical simulation of turbulent impinging jet on a rotating disk

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2007
    A. Abdel-Fattah, Article first published online: 25 OCT 200
    Abstract The calculations of quasi-three-dimensional momentum equations were carried out to study the influence of wall rotation on the characteristics of an impinging jet. The pressure coefficient, the mean velocity distributions and the components of Reynolds stress are calculated. The flow is assumed to be steady, incompressible and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations and k,, model equations. The flow characteristics were studied by varying rotation speed , for 0,,,167.6 rad/s, the distance from nozzle to disk (H/d) was (3, 5, 8 and 10) and the Reynolds number Re base on VJ and d was 1.45 × 104. The results showed that, the radial velocity and turbulence intensity increase by increasing the rotation speed and decrease in the impingement zone as nozzle to disk spacing increases. When the centrifugal force increases, the radial normal stresses and shear stresses increase. The location of maximum radial velocity decreases as the local velocity ratio (,) increases. The pressure coefficient depends on the centrifugal force and it decreases as the distance from nozzle to plate increases. In impingement zone and radial wall jet, the spread of flow increases as the angular velocity decreases The numerical results give good agreement with the experiment data of Minagawa and Obi (Int. J. of Heat and Fluid Flow 2004; 25:759,766). Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Formation of Arrayed Droplets by Soft Lithography and Two-Phase Fluid Flow, and Application in Protein Crystallization,

    ADVANCED MATERIALS, Issue 15 2004
    B. Zheng
    Abstract This paper presents an overview of our recent work on the use of soft lithography and two-phase fluid flow to form arrays of droplets. The crucial issues in the formation of stable arrays of droplets and alternating droplets of two sets of aqueous solutions include the geometry of the microchannels, the capillary number, and the water fraction of the system. Glass capillaries could be coupled to the PDMS microchannels and droplets could be transferred into glass capillaries for long-term storage. The arrays of droplets have been applied to screen the conditions for protein crystallization with microbatch and vapor diffusion techniques. [source]


    Mechanism of the formation of singularities for quasilinear hyperbolic systems with linearly degenerate characteristic fields

    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 2 2008
    Ta-Tsien Li
    Abstract One often believes that there is no shock formation for the Cauchy problem of quasilinear hyperbolic systems (of conservation laws) with linearly degenerate characteristic fields. It has been a conjecture for a long time (see Arch. Rational Mech. Anal. 2004; 172:65,91; Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer: New York, 1984) and it is still an open problem in the general situation up to now. In this paper, a framework to justify this conjecture is proposed, and, by means of the concept such as the strict block hyperbolicity, the part richness and the successively block-closed system, some general kinds of quasilinear hyperbolic systems, which verify the conjecture, are given. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Numerical Simulation of Fluid Flow and Enzyme Catalysed Substrate Conversion in a Packed-bed Enzyme Reactor

    PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003
    Ö. Özmutlu M. Sc.
    This numerical study evaluates the momentum and mass transfer in an immobilized enzyme reactor. The simulation gives detailed information of the local substrate and product concentrations with respect to external and internal transport limitations. The flow field characterization of the system makes it possible to understand fluid mechanical properties and its importance on transport processes. With the obtained data it is also possible to detect zones of high, low and latent enzymatic activity and to determine whether the conversion is limited due to mass transfer or reaction resistances. [source]


    Computational Evaluation of Dialysis Fluid Flow in Dialyzers With Variously Designed Jackets

    ARTIFICIAL ORGANS, Issue 6 2009
    Ken-ichiro Yamamoto
    Abstract Dialyzer performance strongly depends on the flow of blood and dialysis fluid as well as membrane performance. It is necessary, particularly to optimize dialysis fluid flow, to develop a highly efficient dialyzer. The objective of the present study is to evaluate by computational analysis the effects of dialyzer jacket baffle structure, taper angle, and taper length on dialysis fluid flow. We modeled 10 dialyzers of varying baffle angles (0, 30, 120, 240, and 360°) with and without tapers. We also modeled 30 dialyzers of varying taper lengths (0, 12.5, 25.0, and 50.0 mm) and angles (0, 2, 4, and 6°) based on technical data of APS-SA dialyzers having varying surface areas of 0.8, 1.5, and 2.5 m2 (Rexeed). Dialysis fluid flow velocity was calculated by the finite element method. The taper part was divided into 10 sections of varying fluid resistances. A pressure of 0 Pa was set at the dialysis fluid outlet, and a dialysis fluid flow rate of 500 mL/min at the dialysis fluid inlet. Water was used as the dialysis fluid in the computational analysis. Results for dialysis fluid flow velocity of the modeled dialyzers indicate that taper design and a fully surrounded baffle are important in making the dialysis fluid flow into a hollow-fiber bundle easily and uniformly. However, dialysis fluid flow channeling occurred particularly at the outflowing part with dialyzers having larger taper lengths and angles. Optimum design of dialysis jacket structure is essential to optimizing dialysis fluid flow and to increasing dialyzer performance. [source]


    Effects of Overpressured Fluid Flow on Petroleum Accumulation in the Yinggehai Basin

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2004
    HAO Fang
    Abstract, The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on petroleum accumulation. (1) The overpressured fluid flow has enhanced the maturation of shallow-buried source rocks, which has caused the source rocks that would have remained immature under the conduction background to be mature for hydrocarbon generation. As a result, the overpressured fluid flow has increased the volume and interval of mature source rocks. (2) The overpressured fluid flow has strong extraction effects on the immature or low-mature source rocks in the shallow parts. This has increased, to some extent, the expulsion efficiency of the source rocks. More importantly, the extraction effects have strongly limited the effectiveness of biomarker parameters from oil and condensate in reflecting the source and maturity of the oil and gas. (3) The flow has caused the sandstones in the shallow parts to get into the late diagenesis stage, and significantly reduced the porosity and permeability of the sandstones. This study confirms that even in sedimentary basins in which no topography-driven groundwater flow systems have ever developed, the cross-formation migration of overpressured fluids and the resultant energy conduction and material exchange can significantly affect the thermal regime, source rock maturation and sandstone diagenesis. As a result, the effects of overpressured fluid flow must be taken into account in analyzing the mechanism of petroleum accumulation. [source]


    Effect of a Magnetic Field on a Micropolar Fluid Flow in the Vicinity of an Axisymmetric Stagnation Point on a Circular Cylinder

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 8 2009
    G. M. Abdel-Rahman
    Abstract The effect of a magnetic field on a micropolar fluid flow in the vicinity of an axisymmetric stagnation point on a circular cylinder is studied numerically. The governing conservation equations of continuity, momentum and angular momentum are partial differential equations which are transformed into a system of ordinary differential equations by using the usual similarity transformations. The resulting system of coupled non-linear ordinary differential equations is solved numerically by using the shooting method. The numerical results indicate the velocity, angular velocity and pressure distributions for different parameters of the problem including Reynolds number, magnetic parameter and dimensionless material properties, etc. In addition, the effect of the pertinent parameters on the local skin friction coefficient and the couple stress are discussed numerically and illustrated graphically. [source]


    Sealing ability of occlusal resin composite restoration using four restorative procedures

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2008
    Danuchit Banomyong
    The purpose of this work was to investigate fluid flow after restoration using four restorative procedures. Micro-gap, internal dye leakage, and micropermeability of bonded interfaces were also investigated. Each tooth was mounted, connected to a fluid flow-measuring device, and an occlusal cavity was prepared. Fluid flow after cavity preparation was recorded as the baseline measurement, and the cavity was restored using one of four restorative procedures: bonding with total-etch (Single Bond 2) or self-etch (Clearfil SE Bond) adhesives without lining; or lining with resin-modified glass-ionomer cement (GIC) (Fuji Lining LC) or conventional GIC (Fuji IX) and then bonding with the total-etch adhesive. Fluid flow was recorded after restoration and at specific time-points up to 6 months thereafter and recorded as a percentage. Micro-gap formation was analyzed using resin replicas and scanning electron microscopy. Internal leakage of 2% methylene blue dye was observed under a light microscope. In micro-permeability testing, fluorescent-dye penetration was investigated using confocal laser microscopy. None of the restorative procedures provided a perfectly sealed restoration. Glass-ionomer lining did not reduce fluid flow after restoration, and micro-gaps were frequently detected. The self-etch adhesive failed to provide a better seal than the total-etch adhesive, and even initial gap formation was rarely observed for the former. Penetration of methylene blue and fluorescent dyes was detected in most restorations. [source]


    Seismic characterization of vertical fractures described as general linear-slip interfaces

    GEOPHYSICAL PROSPECTING, Issue 2 2003
    Vladimir Grechka
    ABSTRACT Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear-slip theory, we investigate seismic signatures of the effective medium produced by a single set of ,general' vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi-major axis of the S1 -wave normal-moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1 -wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear-wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P-waves and two split S-waves, combined with a portion of the P-wave slowness surface reconstructed from multi-azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter-estimation procedure is verified by performing non-linear inversion based on the exact equations. [source]


    Heat and fluid flow characteristics inside differentially heated square enclosures with single and multiple sliding walls

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 7 2009
    E.M. Wahba
    Abstract Fluid flow and heat transfer characteristics of differentially heated lid driven cavities are numerically modeled and analyzed in the present study. One-, two-, and four-sided lid driven cavity configurations are considered with the vertical walls being maintained at different temperatures and the horizontal walls being thermally insulated. Eight different cavity configurations are considered depending on the direction of wall motion. The Prandtl number Pr is taken to be 0.7, the Grashof number is taken to be 104, while two values for the Richardson number Ri are considered, 0.1 and 10. It is found that both the Richardson number and the cavity configuration affect the heat and fluid flow characteristics in the cavity. It is concluded that for Ri=0.1, a four-sided driven cavity configuration with all walls rotating in the same direction would triple the value of the average Nusselt number at the cold wall when compared to a one-sided driven cavity configuration. However, for Ri=10, the cavity configuration has minimal effect and all eight cases result in an average Nusselt number value at the cold wall ranging between 1.3 and 1.9. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/htj.20264 [source]


    Fluid flow and heat transfer characteristics of cone orifice jet (effects of cone angle)

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2009
    Mizuki Kito
    Abstract The use of a jet from an orifice nozzle with a saddle-backed-shape velocity profile and a contracted flow at the nozzle exit may improve the heat transfer characteristics on an impingement plate because of its larger centerline velocity. However, it requires more power to operate than a common nozzle because of its higher flow resistance. We therefore initially considered the use of a cone orifice nozzle to obtain better heat transfer performance as well as to decrease the flow resistance. We examined the effects of the cone angle , on the cone orifice free jet flow and heat transfer characteristics of the impinging jet. We compared two nozzles: a pipe nozzle and a quadrant nozzle. The first one provides a velocity profile of a fully developed turbulent pipe flow, and the second has a uniform velocity profile at the nozzle exit. We observed a significant enhancement of the heat transfer characteristics of the cone orifice jets at Re=1.5×104. Using the cone orifice impinging jets enhanced the heat transfer rates as compared to the quadrant jet, even when the jets were supplied with the same operational power as the pipe jet. For instance, a maximum enhancement up to approximately 22% at r/do,0.5 is observed for ,=15°. In addition, an increase of approximately 7% is attained as compared to when the pipe jet was used. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20243 [source]


    Fluid flow and heat transfer of natural convection around array of vertical heated plates

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2009
    Kenzo Kitamura
    Abstract Natural convective flows around an array of vertical heated plates were investigated experimentally. Main concerns were directed to the influences of plate numbers on the heat transfer characteristics of the plates. Both surfaces of the test plates were heated with constant and equal heat fluxes and their local heat transfer coefficients were measured. The results showed that the coefficients of the surfaces of the array facing outward became higher than those facing inward. The flow fields around the bottom of the plate array were visualized with smoke. The result showed that the ambient flow is directed from the sides to the center of the array and enters the parallel channel obliquely. These flows cause the above difference in the coefficients. While the difference gradually diminished in between the plates placed in the central section of the array, their coefficients asymptotically approach those of the analytical correlation that assumed a uniform velocity at the channel inlet. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20232 [source]


    Fluid flow and heat transfer of opposing mixed convection adjacent to downward-facing, inclined heated plates

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2009
    Kenzo Kitamura
    Abstract Experimental investigations were carried out for opposing mixed convective flows of air adjacent to downward-facing, inclined heated plates. The experiments covered the ranges of the Reynolds and modified Rayleigh numbers from ReL=400 to 4600 and RaL*=1.0×107 to 5.4×108, and the inclination angles from ,=15 to 75° from horizontal. The flow fields over the plates were visualized with smoke. The results showed that a separation of forced boundary layer flow occurs first at the bottom edge of the plate, and then the separation point shifts toward upstream with increasing wall heat flux, and finally, reaches the top edge of the plates. It was found that the separations at the bottom and top edges are predicted with a non-dimensional parameter (GrL,*/ReL2.5)=0.35 and 1.0, respectively. The local heat transfer coefficients of the inclined plates were also measured and the results showed that the minimum coefficients appear in the separation region. Moreover, it was revealed that forced, natural, and combined convective flows can be classified by the non-dimensional parameter (GrL,*/ReL2.5). © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Pub- lished online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20233 [source]


    Fluid flow and heat transfer of natural convection at a slightly inclined, upward-facing, heated plate

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 5 2002
    Fumiyoshi Kimura
    Abstract Natural convective flows over upward-facing, inclined plates were investigated experimentally, with an emphasis on the role of opposing flows that appear over the plates inclined slightly from the horizontal line. The flow fields over the plates and the surface temperatures of the heated plates were visualized with both dye and a liquid-crystal thermometry. The results showed that both the descending and ascending flows appeared over the plates when the inclination angles of the plates were less than 15°. The two flows collided with each other at a certain distance from the plate edge, and then detached from the plate to become a thermal plume. It was found that the above distance was determined solely by the inclination angles and was independent of sizes and heat fluxes of the plates. The local heat transfer coefficients of the plates were also measured. The results showed that the heat transfer from the plate was enhanced by the occurrence of the descending flows. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 362,375, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.10036 [source]


    Fluid flow and heat transfer in the transition process of natural convection over an inclined plate

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2001
    Katsuo Komori
    Abstract The present study deals with fluid flow and heat transfer in the transition process of natural convection over an inclined plate. In order to examine the mechanism of the transition process, experiments on the flow and heat transfer were performed for various plate inclination angles in the range of 20 to 75°. The wall temperature and fluid flow fields were visualized using a liquid crystal sheet and fluorescent paint, respectively. The visualization confirmed that separation of a boundary layer flow took place, and the onset point of streaks appeared over the plate wall when the modified Rayleigh number exceeded a characteristic value for each inclination angle. The local Nusselt number in the transition range was proportional to the one-third power of the local modified Rayleigh number. By introducing a nondimensional parameter, a new correlation between visualizations of the flow and temperature fields and heat transfer was proposed. © 2001 Scripta Technica, Heat Trans Asian Res, 30(8): 648,659, 2001 [source]


    Fluid flow and heat transfer investigations in shell and dimple heat exchangers

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2005
    A. Witry
    Abstract Heat transfer and pressure drop characteristics are investigated here using experimental and analytical techniques for a dimple plate heat exchanger. The analysis uses the log mean temperature difference method (LMTD) in all its calculations. Whilest the shell side flow highly resembles the flow over a rough or wavy plate, the tube side passage in these represents the flow over short hexagonal tube banks with the flowing across the sectional areas between the hexagons having the shape of a benzene ring. Local and global experimental measurements are carried out around the heat exchanger. Furthermore, analytical models for both sides of the heat exchanger were obtained from the literature. Reasonable cross match between experimental and analytical results could be obtained. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2010
    C. E. BUCHOLZ
    Abstract Quartz-kyanite veins, adjacent alteration selvages and surrounding ,precursor' wall rocks in the Dalradian Saxa Vord Pelite of Unst in the Shetland Islands (Scotland) were investigated to constrain the geochemical alteration and mobility of Al associated with channelized metamorphic fluid infiltration during the Caledonian Orogeny. Thirty-eight samples of veins, selvages and precursors were collected, examined using the petrographic microscope and electron microprobe, and geochemically analysed. With increasing grade, typical precursor mineral assemblages include, but are not limited to, chlorite+chloritoid, chlorite+chloritoid+kyanite, chlorite+chloritoid+staurolite and garnet+staurolite+kyanite+chloritoid. These assemblages coexist with quartz, white mica (muscovite, paragonite, margarite), and Fe-Ti oxides. The mineral assemblage of the selvages does not change noticeably with metamorphic grade, and consists of chloritoid, kyanite, chlorite, quartz, white mica and Fe-Ti oxides. Pseudosections for selvage and precursor bulk compositions indicate that the observed mineral assemblages were stable at regional metamorphic conditions of 550,600 °C and 0.8,1.1 GPa. A mass balance analysis was performed to assess the nature and magnitude of geochemical alteration that produced the selvages adjacent to the veins. On average, selvages lost about ,26% mass relative to precursors. Mass losses of Na, K, Ca, Rb, Sr, Cs, Ba and volatiles were ,30 to ,60% and resulted from the destruction of white mica. Si was depleted from most selvages and transported locally to adjacent veins; average selvage Si losses were about ,50%. Y and rare earth elements were added due to the growth of monazite in cracks cutting apatite. The mass balance analysis also suggests some addition of Ti occurred, consistent with the presence of rutile and hematite-ilmenite solid solutions in veins. No major losses of Al from selvages were observed, but Al was added in some cases. Consequently, the Al needed to precipitate vein kyanite was not derived locally from the selvages. Veins more than an order of magnitude thicker than those typically observed in the field would be necessary to accommodate the Na and K lost from the selvages during alteration. Therefore, regional transport of Na and K out of the local rock system is inferred. In addition, to account for the observed abundances of kyanite in the veins, large fluid-rock ratios (102,103 m3fluid m,3rock) and time-integrated fluid fluxes in excess of ,104 m3fluid m,2rock are required owing to the small concentrations of Al in aqueous fluids. It is concluded that the quartz-kyanite veins and their selvages were produced by regional-scale advective mass transfer by means of focused fluid flow along a thrust fault zone. The results of this study provide field evidence for considerable Al mass transport at greenschist to amphibolite facies metamorphic conditions, possibly as a result of elevated concentrations of Al in metamorphic fluids due to alkali-Al silicate complexing at high pressures. [source]


    Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2007
    Y.-F. ZHENG
    Abstract Quartz veins in high-pressure to ultrahigh-pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U-Pb dating of zircon from a kyanite-quartz vein within ultrahigh-pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA-ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U-Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O-isotope analyses gave similar ,18O values for minerals from both vein and eclogite, indicating that the vein-forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz,mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700,650 °C in a transition from ultrahigh-pressure to high-pressure eclogite-facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ,500 °C without corresponding metamorphism. In either case, the kyanite,quartz vein formed later than the peak ultrahigh-pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles. [source]


    Geochemical and stable isotope resetting in shear zones from Täschalp: constraints on fluid flow during exhumation in the Western Alps

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2003
    I. Cartwright
    Abstract Fluid flow at greenschist facies conditions during exhumation of the western Alps occurred in several penecontemporaneous systems, including shear zones at lithological contacts, deformed contacts between serpentinite bodies and metabasalts, albite veins within metabasalts, and calcite + quartz veins within calcareous schists. Fluid flow in shear zones that juxtapose metasediments and ophiolitic rocks within the Piemonte Unit reset O and H isotope ratios. ,18O values are buffered by the wall rocks; however, calculated fluid ,2H values are similar within all the shear zones suggesting that they formed an interconnected network. The similarity of ,2H values of the sheared rocks and those of unsheared calcareous schists suggests that the fluids were derived from, or had equilibrated with, the schists that envelop the ophiolite rocks. Time-integrated fluid fluxes at the sheared contacts estimated from changes in Si in metabasalts were up to 105 m3 m,2, with the fluid flowing up temperature driven either by topography or seismic pumping. Individual shear zones were active for c. 2,3 Myr, implying average fluid fluxes of up to 10,9 m3 m,2 s,1. Rocks in shear zones within the ophiolite away from contacts with the metasediments show much less marked isotopic and geochemical changes, implying that fluid volumes decreased into the ophiolite unit, consistent with the source of fluids being the metasediments. Fluids were generated by dehydration reactions that were intersected during exhumation and, while many rocks show the affects of fluid,rock interaction, large-scale fluid flow between major units was not common. [source]


    Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2005
    D. M. D'Arcy
    The aim of this work was to investigate the dissolution rate from both the curved and planar surfaces of cylindrical compacts of benzoic acid, which were placed centrally and non-centrally at the base of the vessel of the paddle dissolution apparatus. The effect of fixing the compacts to a particular position on the variability of dissolution results was also examined. In addition, computational fluid dynamics (CFD) was used to simulate fluid flow around compacts in the different positions in the vessel, and the relationship between the local hydrodynamics in the region of the compacts and the dissolution rate determined. The dissolution rate was found to increase from the centre position to the off-centre positions for each surface examined. There was a corresponding increase in maximum fluid velocities calculated from the CFD fluid flow simulations at a fixed distance from the compact. There was less variability in dissolution from compacts fixed to any of the positions compared with those that were not fixed. Fluid flow around compacts in different positions could be successfully modelled, and hydrodynamic variability examined, using CFD. The effect of asymmetric fluid flow was evident visually from the change in shape of the eroded compacts. [source]


    Fluid flow in an impacting symmetrical tee junction: I single-phase flow and experimental

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2009
    A. P. Doherty
    Abstract Experiments were conducted on single-phase fluid flow in a horizontal 90° symmetrical impacting tee junction of 0.026 m i.d. The impacting geometry was chosen because, unlike the combining tee, the pressure loss of the system was not amenable to modelling. Various methods of presentation of the junction pressure drop were attempted and a simple dimensionless model suggested based on the inlet Reynolds number and the equivalent length parameter le/d. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


    Fluid flow in an impacting symmetrical tee junction II: two-phase air/water flow

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2009
    A. P. Doherty
    Abstract A universal flow regime map was presented for two-phase flow in a horizontal pipe. Data were given on two-phase gas/liquid flow in a symmetrical impacting tee junction. The flow regimes in the inlet arm of the tee were those expected for a straight pipe. This was not so for the outlet arm where, in most cases, flow regimes occurred earlier than expected. At low liquid outlet flows the stratified regime was reinforced into higher gas flows than expected. The liquid hold-up exhibited variations over the tee junction. The pressure drop in the inlet arm agreed with similar data for the straight pipe, but in the tee outlets was below that expected for the straight pipe. The tee junction pressure drop showed some parallels to the corresponding single-phase flow data but the le/d dimensionless values for the junction pressure drop showed a wide variation, in contrast to the single-phase junction data. A model was presented based on the Lockhard,Martinelli theory that enabled the tee pressure drop to be predicted. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


    Fluid flow in an impacting symmetrical tee junction III: three-phase air/water/oil flow

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2009
    A. P. Doherty
    Abstract Results are presented on three-phase air/oil/water horizontal flow in a 0.026 m i.d. symmetrical impacting tee junction. The flow regimes observed agreed with an existing three-phase flow map. The inversion from water-dominated (WD) to oil-dominated (OD) flow was at an oil-to-liquid volumetric ratio of fo = 0.285. The inversion was at a low fo value because of the relatively tranquil conditions studied. Retention of oil on the pipe wall at the air/water two-phase condition at fo = 0 resulted in a dramatic increase in the pressure drop above that expected for the two-phase flow. The pressure drop in the tee junction arms increased with liquid-flow rate. The actual tee junction pressure drop showed a similar pattern to that observed in the inlet arm. The pressure drop was relatively constant in the OD region but showed a dramatic increase in the WD and inversion regions at low fo values. Non-dimensionalising the junction pressure drop as le/d gave a similar pattern but the scatter of data increased. The tee pressure loss data were modelled using the Lockhart-Martinelli ,G parameter and gave similar but different correlations for the WD and OD regions. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


    A versatile software tool for the numerical simulation of fluid flow and heat transfer in simple geometries

    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 1 2010
    A. M. G. Lopes
    Abstract The present work describes a software tool aimed at the simulation of fluid flow and heat transfer for two-dimensional problems in a structured Cartesian grid. The software deals with laminar and turbulent situations in steady-state or transient regime. An overview is given on the theoretical principles and on the utilization of the program. Results for some test cases are presented and compared with benchmarking solutions. Although EasyCFD is mainly oriented for educational purposes, it may be a valuable tool for a first analysis of practical situations. EasyCFD is available at www.easycfd.net. © 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 18: 14,27, 2010; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20230 [source]


    Simulation of two-phase flow with sub-scale droplet and bubble effects

    COMPUTER GRAPHICS FORUM, Issue 2 2009
    Viorel Mihalef
    Abstract We present a new Eulerian-Lagrangian method for physics-based simulation of fluid flow, which includes automatic generation of sub-scale spray and bubbles. The Marker Level Set method is used to provide a simple geometric criterion for free marker generation. A filtering method, inspired from Weber number thresholding, further controls the free marker generation (in a physics-based manner). Two separate models are used, one for sub-scale droplets, the other for sub-scale bubbles. Droplets are evolved in a Newtonian manner, using a density-extension drag force field, while bubbles are evolved using a model based on Stokes' Law. We show that our model for sub-scale droplet and bubble dynamics is simple to couple with a full (macro-scale) Navier-Stokes two-phase flow model and is quite powerful in its applications. Our animations include coarse grained multiphase features interacting with fine scale multiphase features. [source]


    Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells

    ACTA PHYSIOLOGICA, Issue 3 2009
    H. A. Praetorius
    Abstract Aim:, Changes in perfusate flow produce increases in [Ca2+]i in renal epithelial cells. Cultured renal epithelia require primary cilia to sense subtle changes in flow. In perfused kidney tubules this flow response is caused by nucleotide signalling via P2Y2 receptors. It is, however, not known whether nucleotides are released by mechanical stress applied to renal primary cilia. Here we investigate whether nucleotides are released during the cilium-dependent flow response and contribute to the flow-induced, cilium-dependent [Ca2+]i signal. Methods:, MDCK cells loaded with Fluo-4-AM were observed at 37 °C in semi-open single or closed-double perfusion chambers. Results:, Our data suggest a purinergic component of the cilium-dependent flow-response: (1) ATP scavengers and P2 receptor antagonists reduced (55%) the cilium-dependent flow-response; (2) ATP added at subthreshold concentration sensitized the renal epithelia to flow changes; (3) increases in fluid flow transiently enhanced the ATP concentration in the superfusate (measured by biosensor-cells). To test if nucleotides were released in sufficient quantities to stimulate renal epithelia we used non-confluent MDCK cells without cilia as reporter cells. We confirmed that non-confluent cells do not respond to changes in fluid flow. Placing confluent, ciliated cells upstream in the in-flow path of the non-confluent cells made them responsive to fluid flow changes. This phenomenon was not observed if either non-confluent or de-ciliated confluent cells were placed upstream. The [Ca2+]i -response in the non-confluent cells with ciliated cells upstream was abolished by apyrase and suramin. Conclusion:, This suggests that subtle flow changes sensed by the primary cilium induces nucleotide release, which amplifies the epithelial [Ca2+]i -response. [source]


    Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 6 2007
    M. H. Tavakoli
    Abstract For the seeding process of oxide Czochralski crystal growth, the flow and temperature field of the system as well as the seed-melt interface shape have been studied numerically using the finite element method. The configuration usually used initially in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and non-rotating seed crystal. At first the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF coil was calculated. Using this heat source the fluid flow and temperature field were determined in the whole system. We have considered two cases with respect to the seed position: (1) before and (2) after seed touch with the melt. It was observed that in the case of no seed rotation (,seed = 0), the flow pattern in the bulk melt consists of a single circulation of a slow moving fluid. In the gas domain, there are different types of flow motion related to different positions of the seed crystal. In the case of touched seed, the seed-melt interface has a deep conic shape towards the melt. It was shown that an active afterheater and its location with respect to the crucible, influences markedly the temperature and flow field of the gas phase in the system and partly in the melt. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]