Home About us Contact | |||
Fluid Component (fluid + component)
Selected AbstractsVolume fraction based miscible and immiscible fluid animationCOMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 3-4 2010Kai Bao Abstract We propose a volume fraction based approach to effectively simulate the miscible and immiscible flows simultaneously. In this method, a volume fraction is introduced for each fluid component and the mutual interactions between different fluids are simulated by tracking the evolution of the volume fractions. Different techniques are employed to handle the miscible and immiscible interactions and special treatments are introduced to handle flows involving multiple fluids and different kinds of interactions at the same time. With this method, second-order accuracy is preserved in both space and time. The experiment results show that the proposed method can well handle both immiscible and miscible interactions between fluids and much richer mixing detail can be generated. Also, the method shows good controllability. Different mixing effects can be obtained by adjusting the dynamic viscosities and diffusion coefficients. Copyright © 2010 John Wiley & Sons, Ltd. [source] Effectiveness of Microporous Polysaccharide Hemospheres for Achieving Hemostasis in Mohs Micrographic SurgeryDERMATOLOGIC SURGERY, Issue 6 2004FRCPC, Stephen R. Tan MD Background. Microporous polysaccharide hemospheres consist of controlled-porosity spherical particles manufactured from bioinert plant polysaccharide. Microporous polysaccharide hemospheres facilitate hemostasis by rapidly absorbing the fluid component of blood, concentrating platelets and clotting factors to accelerate blood clotting. Objective. The objective was to compare a microporous polysaccharide hemosphere bandage and electrocautery in achieving hemostasis. Methods. Twenty-four patients with a total of 48 stages of Mohs micrographic surgery were included. Patients were stratified by whether or not they were taking anticoagulant medications. Within each group, patients were randomized to receive either the microporous polysaccharide hemosphere bandage or electrocautery. Outcomes included bleeding through the dressing (early time point) and active bleeding upon dressing removal (late time point). Results. Nineteen patients not taking anticoagulants had 40 stages, of which 18 received the study bandage and 22 received electrocautery. The remaining 5 patients on anticoagulants had 8 stages, of which 4 received the study bandage and 4 received electrocautery. In both total and subgroup analysis, there was a higher incidence of bleeding through the dressing with the study bandage (p<0.05), but no increase in the incidence of active bleeding upon dressing removal (p>0.05). Conclusion. The microporous polysaccharide hemosphere study bandage had an increased incidence of bleeding through the dressing compared to electrocautery, but did not have an increased incidence of active bleeding upon dressing removal. [source] Reactive flow of mixed CO2,H2O fluid and progress of calc-silicate reactions in contact metamorphic aureoles: insights from two-dimensional numerical modellingJOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2003X. Cui Abstract Previous models of hydrodynamics in contact metamorphic aureoles assumed flow of aqueous fluids, whereas CO2 and other species are also common fluid components in contact metamorphic aureoles. We investigated flow of mixed CO2,H2O fluid and kinetically controlled progress of calc-silicate reactions using a two-dimensional, finite-element model constrained by the geological relations in the Notch Peak aureole, Utah. Results show that CO2 strongly affects fluid-flow patterns in contact aureoles. Infiltration of magmatic water into a homogeneous aureole containing CO2,H2O sedimentary fluid facilitates upward, thermally driven flow in the inner aureole and causes downward flow of the relatively dense CO2 -poor fluid in the outer aureole. Metamorphic CO2 -rich fluid tends to promote upward flow in the inner aureole and the progress of devolatilization reactions causes local fluid expulsion at reacting fronts. We also tracked the temporal evolution of P-T-XCO2conditions of calc-silicate reactions. The progress of low- to medium-grade (phlogopite- to diopside-forming) reactions is mainly driven by heat as the CO2 concentration and fluid pressure and temperature increase simultaneously. In contrast, the progress of the high-grade wollastonite-forming reaction is mainly driven by infiltration of chemically out-of-equilibrium, CO2 -poor fluid during late-stage heating and early cooling of the inner aureole and thus it is significantly enhanced when magmatic water is involved. CO2 -rich fluid dominates in the inner aureole during early heating, whereas CO2 -poor fluid prevails at or after peak temperature is reached. Low-grade metamorphic rocks are predicted to record the presence of CO2 -rich fluid, and high-grade rocks reflect the presence of CO2 -poor fluid, consistent with geological observations in many calc-silicate aureoles. The distribution of mineral assemblages predicted by our model matches those observed in the Notch Peak aureole. [source] REE and C-O Isotopic Geochemistry of Calcites from the World-class Huize Pb-Zn Deposits, Yunnan, China: Implications for the Ore GenesisACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Zhilong HUANG Abstract: The world-class Huize Pb-Zn deposits of Yunnan province, in southwestern China, located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province, has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25% and contains abundant associated metals, such as Ag, Ge, Cd, and Ga. The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield. Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types, namely lumpy, patch and vein calcites in accordance with their occurrence. There is not intercalated contact between calcite and ore minerals and among the three types of calcite, indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element (REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits. From lumpy to patch to vein calcites, REE contents decrease as LREE/HREE ratios increase. The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped, in which the lumpy calcite shows (La)N < (Ce)N < (Pr)N, (Nd)N with Eu/Eu* < 1, the patch calcite has (La)N < (Ce)N < (Pr)N, (Nd)N with Eu/Eu* > 1, and the vein calcite displays (La)N > (Ce)N > (Pr)N > (Nd)N with Eu/Eu* > 1. The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield. The ,13CPDB and ,18OSMOW values of the three types of calcites vary from ,3.5, to ,2.1, and 16.7, to 18.6,, respectively, falling within a small field between primary mantle and marine carbonate in the ,13CPDB vs ,18OSMOW diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages. The ore-forming fluids of the deposits resulted from crustal-mantle mixing processes, in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts, and the crustal fluid was mainly provided by carbonate strata in the orefield. The ore-forming fluids in the deposits were homogenized before mineralization, and the ore-forming environment varied from relatively reducing to oxidizing. [source] |