Home About us Contact | |||
FLT3 Gene (flt3 + gene)
Selected AbstractsNovel regions of acquired uniparental disomy discovered in acute myeloid leukemiaGENES, CHROMOSOMES AND CANCER, Issue 9 2008Manu Gupta The acquisition of uniparental disomy (aUPD) in acute myeloid leukemia (AML) results in homozygosity for known gene mutations. Uncovering novel regions of aUPD has the potential to identify previously unknown mutational targets. We therefore aimed to develop a map of the regions of aUPD in AML. Here, we have analyzed a large set of diagnostic AML samples (n = 454) from young adults (age: 15,55 years) using genotype arrays. Acquired UPD was found in 17% of the samples with a nonrandom distribution particularly affecting chromosome arms 13q, 11p, and 11q. Novel recurrent regions of aUPD were uncovered at 2p, 17p, 2q, 17q, 1p, and Xq. Overall, aUPDs were observed across all cytogenetic risk groups, although samples with aUPD13q (5.4% of samples) belonged exclusively to the intermediate-risk group as defined by cytogenetics. All cases with a high FLT3 -ITD level, measured previously, had aUPD13q covering the FLT3 gene. Significantly, none of the samples with FLT3 -ITD - /FLT3 -TKD+ mutation exhibited aUPD13q. Of the 119 aUPDs observed, the majority (87%) were due to mitotic recombination while only 13% were due to nondisjunction. This study demonstrates aUPD is a frequent and significant finding in AML and pinpoints regions that may contain novel mutational targets. © 2008 Wiley-Liss, Inc. [source] D324N single-nucleotide polymorphism in the FLT3 gene is associated with higher risk of myeloid leukemiasGENES, CHROMOSOMES AND CANCER, Issue 4 2006Susanne Schnittger Mutations within the FLT3 gene are of growing importance for classification, risk assessment, and therapeutic targeting of acute myeloid leukemia (AML). We analyzed 656 AML patients for a recently described single-nucleotide polymorphism (SNP) in the third immunoglobulin-like domain of the extracellular region of FLT3. The FLT3 D324N variant was present in 42 cases (6.4%), but it was not associated with a specific AML subtype and did not show an elevated leukocyte count, as do other FLT3 mutations. In remission samples, a 50% ratio of the normal to the D324N variant was detectable. Stably expressed in IL-3 dependent Ba/F3 cells, the D324N variant did not confer receptor autophosphorylation, factor independent growth, or increased resistance to apoptotic cell death in response to varying doses of FLT3 ligand. In 400 healthy donors, the FLT3 D324N variant was detected in 6 cases (1.5%) and segregated in a family. Thus, it was shown to be a polymorphism with a lower frequency in healthy controls than in patients with AML (P < 0.001). In addition, 21 of 234 CML (9.0%) and 7 of 155 ALL (4.5%) cases carried the FLT3 D324N. Our data suggest that the FLT3 D324N variant might be associated with a predisposition to different subtypes of leukemia. © 2005 Wiley-Liss, Inc. [source] Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regenerationJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 12 2007Iraz T Aydin Abstract Background and Aim:, The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Methods:, Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. Results:, The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. Conclusion:, The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration. [source] |