Floristic Patterns (floristic + pattern)

Distribution by Scientific Domains


Selected Abstracts


Floristic patterns and plant traits of Mediterranean communities in fragmented habitats

JOURNAL OF BIOGEOGRAPHY, Issue 7 2006
Guillem Chust
Abstract Aim, To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal-limitation mechanisms change throughout secondary succession? Is the dispersal-limitation mechanism related to plant functional traits? Location, A Mediterranean region, the massif of Albera (Spain). Methods, Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal-related factors (habitat fragmentation and geographical distance) and environmental constraints (climate-related variables) influencing species similarity. We tested the association between dispersal-related factors and plant traits (dispersal mode and life form). Results, In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal-dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind-dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions, Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness. [source]


Effects of stream restoration and management on plant communities in lowland streams

FRESHWATER BIOLOGY, Issue 1 2006
TINA CHARLOTTE MOUSTGAARD PEDERSEN
Summary 1. We evaluated restoration success on macrophyte species diversity and composition in lowland streams using communities in 30 naturally meandering stream reaches in the western part of Jutland, Denmark, as reference target communities. Fuzzy set clustering was used to examine the floristic and environmental similarity among reaches, whereas fuzzy set ordination was used to relate floristic patterns to environmental variables. 2. Two major groups of streams were identified based on their floristic composition. One group consisted of reference and restored reaches and the other of the majority of channelised reaches. We found that management exerted a strong influence on the macrophyte communities and that the identified groups were related to differences in management intensity. 3. Our results also indicate that bank morphology and bed level affected macrophyte communities in the streams, particularly the richness and abundance of terrestrial species. The analyses performed suggest that shallow and wide banks allow for a larger migration of species from the stream banks into the streams, thereby enhancing species diversity within the stream channel. 4. The results of this study suggest that macrophyte communities in channelised lowland streams can recover following restorative interventions given that stream management (i.e. weed cutting and dredging) is minimised and that stream banks are reprofiled to improve the lateral connectivity between the stream and its valley. [source]


Importance of soils, topography and geographic distance in structuring central Amazonian tree communities

JOURNAL OF VEGETATION SCIENCE, Issue 6 2008
Stephanie A. Bohlman
Abstract Question: What is the relative contribution of geographic distance, soil and topographic variables in determining the community floristic patterns and individual tree species abundances in the nutrient-poor soils of central Amazonia? Location: Central Amazonia near Manaus, Brazil. Methods: Our analysis was based on data for 1105 tree species (, 10 cm dbh) within 40 1-ha plots over a ca. 1000-km2 area. Slope and 26 soil-surface parameters were measured for each plot. A main soil-fertility gradient (encompassing soil texture, cation content, nitrogen and carbon) and five other uncorrelated soil and topographic variables were used as potential predictors of plant-community composition. Mantel tests and multiple regressions on distance matrices were used to detect relationships at the community level, and ordinary least square (OLS) and conditional autoregressive (CAR) models were used to detect relationships for individual species abundances. Results: Floristic similarity declined rapidly with distance over small spatial scales (0,5 km), but remained constant (ca. 44%) over distances of 5 to 30 km, which indicates lower beta diversity than in western Amazonian forests. Distance explained 1/3 to 1/2 more variance in floristics measures than environmental variables. Community composition was most strongly related to the main soil-fertility gradient and C:N ratio. The main fertility gradient and pH had the greatest impact of species abundances. About 30% of individual tree species were significantly related to one or more soil/topographic parameters. Conclusions: Geographic distance and the main fertility gradient are the best predictors of community floristic composition, but other soil variables, particularly C:N ratio, pH, and slope, have strong relationships with a significant portion of the tree community. [source]


Mesoscale Patterns in the Floristic Composition of Forests in the Central Western Ghats of Karnataka, India

BIOTROPICA, Issue 4 2010
B. R. Ramesh
ABSTRACT We describe the mesoscale floristic patterns in the central Western Ghats of Karnataka, India, through combined analysis of woody species abundance and stand structure data from a network of ninety-six 1-ha sampling plots spread across 22,000 km2. A total of 61,906 individuals (,10 cm gbh) comprising 400 plant species from 254 genera and 75 families were recorded. Euphorbiaceae, Rubiaceae, Lauraceae and Moraceae families constituted 23.5 percent of the total number of species encountered. The relative dominance of species was skewed with Poecilonueron indicum, Xylia xylocarpa, Terminalia tomentosa and Anogeissus latifolia being dominant in some plots. Correspondence analysis (CA) and a nonmetric multidimensional scaling (NMDS) of plots by species abundances data showed similar arching patterns, with significant correlation between the first axis of CA and NMDS (r=0.77). Hierarchical clustering of plot scores along the three first CA axes resulted in splitting the plots into five different categories that broadly reflect the major bioclimatic features of the region. A multiscale bootstrapping test indicated that categorization of the wettest (wet evergreen group 1 and 2) and driest (dry deciduous) groups were robust (P<0.05 with 1000 bootstraps), while the remaining two transitional groups were uncertain (P=0.12 and 0.26 for moist deciduous and semi-evergreen group, respectively). Principal component analysis revealed that plots with similar floristic composition can encompass contrastingly different physiognomic structures (canopy cover, canopy height and mean tree diameter) probably in relation to their levels of disturbance. Observed patterns in the floristic composition have been discussed in the light of the complex interaction between the bioclimatic and disturbance regimes that characterize the region. [source]