Floral Scent (floral + scent)

Distribution by Scientific Domains


Selected Abstracts


Floral scent in a whole-plant context: moving beyond pollinator attraction

FUNCTIONAL ECOLOGY, Issue 5 2009
Robert A. Raguso
First page of article [source]


Floral scent of bat-pollinated species: West Africa vs. the New World

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2004
STEFAN PETTERSSON
Floral scent of seven West African bat-pollinated tree species, belonging to six families, was collected in situ from flowering individuals using headspace adsorption. The seven species shared neither any specific compounds nor any other discernible pattern in their floral scent composition. Most of the identified compounds are common in the floral scent of species pollinated by a variety of animals. Adansonia digitata (Bombacaceae) was the only African species found to have a substantial proportion of sulphur compounds in its floral scent. This feature contrasts with the sampled New World bat-pollinated plants, which frequently contain these compounds. The floral scent of Ceiba pentandra (Bombacaceae), native to both South America and Africa, contained no sulphur substances, contradicting a previous study in the New World that identified the major floral compounds as dimethyl disulphide and dimethyl trisulphide. We suggest that the differences in the floral scent of C. pentandra, including the absence of sulphur compounds in the African variety, result from the different selective regimes exerted by the Pteropotidae bats, in Africa, and Phyllostomidae bats, in the New World, that visit their flowers. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 161,168. [source]


Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata

FUNCTIONAL ECOLOGY, Issue 5 2009
Chun Chen
Summary 1.,Floral scents have been suggested to play a key role in the obligate pollination mutualism between figs and fig wasps. However, few studies have determined whether pollinator-attractive compounds could alone assure species-specificity (,private channel'), or whether specificity is mediated by more complex ,floral filters', of which scent is only one component. 2.,We examined changes in the floral volatile compounds of Ficus semicordata, a dioecious fig species, during and after pollination using headspace collection and compound identification by Gas Chromatography/Mass Spectrometry (GC/MS). One benzenoid compound, 4-methylanisole, was strongly predominant (94,98%) among the volatile compounds emitted by both male and female receptive figs of F. semicordata, whereas it was totally absent in the volatiles emitted by figs 4 days after pollination, as well as in receptive-stage volatiles emitted by two other sympatric fig species, Ficus racemosa and Ficus hispida. 3.,Bioassays using the specific pollinator of F. semicordata, Ceratosolen gravelyi, in a Y-tube olfactometer showed that 4-methylanisole was attractive to C. gravelyi in a wide range of concentrations (from 1·22 × 10,2 ng/100 ,L to 1·22 × 106ng/100,L). Moreover, chemical blends lacking 4-methylanisole were unattractive to C. gravelyi. These non-active odour sources included volatile compounds emitted by receptive figs of the two other sympatric fig species and volatiles of F. semicordata post-pollination figs. 4.,All these results suggest that 4-methylanisole is the main signal compound in the floral scent of F. semicordata that attracts its obligate pollinator to the host figs at the precise stage required for pollination and oviposition. Furthermore, the high proportion of 4-methylanisole in the odours of receptive figs of both sexes was consistent with the hypothesis of chemical mimicry in dioecious figs. 5.,A simple signal comprised of one compound that is unusual among Ficus and that is an infrequent, usually minor, component of other floral odours, may thus function as a private channel in this specialized obligate mutualism. [source]


The evolution of floral scent and insect chemical communication

ECOLOGY LETTERS, Issue 5 2010
Florian P. Schiestl
Ecology Letters (2010) 13: 643,656 Abstract Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common ,floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. ,Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of ,floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of ,floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction. [source]


The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards

FUNCTIONAL ECOLOGY, Issue 5 2009
Geraldine A. Wright
Summary 1.,The evolution of flowering plants has undoubtedly been influenced by a pollinator's ability to learn to associate floral signals with food. Here, we address the question of ,why' flowers produce scent by examining the ways in which olfactory learning by insect pollinators could influence how floral scent emission evolves in plant populations. 2.,Being provided with a floral scent signal allows pollinators to learn to be specific in their foraging habits, which could, in turn, produce a selective advantage for plants if sexual reproduction is limited by the income of compatible gametes. Learning studies with honeybees predict that pollinator-mediated selection for floral scent production should favour signals which are distinctive and exhibit low variation within species because these signals are learned faster. Social bees quickly learn to associate scent with the presence of nectar, and their ability to do this is generally faster and more reliable than their ability to learn visual cues. 3.,Pollinators rely on floral scent as a means of distinguishing honestly signalling flowers from deceptive ones. Furthermore, a pollinator's sensitivity to differences in nectar rewards can bias the way that it responds to floral scent. This mechanism may select for flowers that provide olfactory signals as an honest indicator of the presence of nectar or which select against the production of a detectable scent signal when no nectar is present. 4.,We expect that an important yet commonly overlooked function of floral scent is an improvement in short-term pollinator specificity which provides an advantage to both pollinator and plant over the use of a visual signal alone. This, in turn, impacts the evolution of plant mating systems via its influence on the species-specific patterns of floral visitation by pollinators. [source]


The importance of scent and nectar filters in a specialized wasp-pollination system

FUNCTIONAL ECOLOGY, Issue 5 2009
Adam Shuttleworth
Summary 1.,Plants with open flowers and exposed nectar should attract a wide diversity of flower visitors, yet, for reasons that are not yet well understood, some plants with these ,generalist' floral traits have highly specialized pollination systems. 2.,We investigated this problem in the African milkweed Pachycarpus grandiflorus which has open flowers that produce copious amounts of exposed and concentrated nectar, yet is visited almost exclusively by spider-hunting wasps in the genus Hemipepsis. 3.,These wasps were the only visitors found to consistently carry pollinaria and a cage experiment showed that they are capable of successfully pollinating this plant. Furthermore, experimental hand-pollinations showed that P. grandiflorus is genetically self-incompatible and thus reliant on pollinators for seed set. 4.,We investigated the roles of chemical (nectar and floral scent) and spectral properties in the selective attraction of wasps and the filtering out of other potential flower visitors. Nectar palatability experiments showed that the nectar is unpalatable to honeybees but palatable to the wasps. Choice experiments conducted in the field and using a Y-maze in the laboratory showed that wasps are attracted primarily by scent rather than visual cues. Analysis of scent using Gas Chromatography-Mass Spectrometry showed that these inflorescences produce 36 different compounds, mostly monoterpenes and aliphatics. Analysis of spectral reflectance showed that flowers have similar colouring to the background vegetation. 5.,We conclude that P. grandiflorus is specialized for pollination by Hemipepsis wasps, and in the absence of morphological filters, achieves specialization through unpalatable nectar, cryptic colouring and scent as a selective pollinator attractant. 6.,This study demonstrates that plants whose flowers are not morphologically adapted to exclude particular floral visitors can achieve specialization through non-morphological filters. [source]


Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata

FUNCTIONAL ECOLOGY, Issue 5 2009
Chun Chen
Summary 1.,Floral scents have been suggested to play a key role in the obligate pollination mutualism between figs and fig wasps. However, few studies have determined whether pollinator-attractive compounds could alone assure species-specificity (,private channel'), or whether specificity is mediated by more complex ,floral filters', of which scent is only one component. 2.,We examined changes in the floral volatile compounds of Ficus semicordata, a dioecious fig species, during and after pollination using headspace collection and compound identification by Gas Chromatography/Mass Spectrometry (GC/MS). One benzenoid compound, 4-methylanisole, was strongly predominant (94,98%) among the volatile compounds emitted by both male and female receptive figs of F. semicordata, whereas it was totally absent in the volatiles emitted by figs 4 days after pollination, as well as in receptive-stage volatiles emitted by two other sympatric fig species, Ficus racemosa and Ficus hispida. 3.,Bioassays using the specific pollinator of F. semicordata, Ceratosolen gravelyi, in a Y-tube olfactometer showed that 4-methylanisole was attractive to C. gravelyi in a wide range of concentrations (from 1·22 × 10,2 ng/100 ,L to 1·22 × 106ng/100,L). Moreover, chemical blends lacking 4-methylanisole were unattractive to C. gravelyi. These non-active odour sources included volatile compounds emitted by receptive figs of the two other sympatric fig species and volatiles of F. semicordata post-pollination figs. 4.,All these results suggest that 4-methylanisole is the main signal compound in the floral scent of F. semicordata that attracts its obligate pollinator to the host figs at the precise stage required for pollination and oviposition. Furthermore, the high proportion of 4-methylanisole in the odours of receptive figs of both sexes was consistent with the hypothesis of chemical mimicry in dioecious figs. 5.,A simple signal comprised of one compound that is unusual among Ficus and that is an infrequent, usually minor, component of other floral odours, may thus function as a private channel in this specialized obligate mutualism. [source]


SPME , A valuable tool for investigation of flower scent

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2003
Petr Barták
Abstract A novel Headspace Solid Phase Microextraction (HS-SPME) protocol is proposed for the analysis of floral scent. Volatile compounds emitted from the flower are collected on a Carboxen/PDMS fiber for 1 hour, transferred to the GC, and analyzed by GC/MS. The method completely eliminates the use of organic solvents, does not require special instrumentation, and may readily be performed in the field without access to mains electricity and other energy supplies. The method is robust, sensitive, and reduces the sampling stress on the investigated plant. Since enzymatic reactions in living flowers may cause changes in the composition of emitted fragrance, dried rosemary (Rosmarinus officinalis L.) was used as a stable standard for the method development and optimization. In addition, grape wine was also suggested as homogeneous, bio-compatible, and relatively stable standard of pronounced and typical scent for the same purpose. The optimized method was used for the comparative investigation of the fragrances emitted by two different species , Lathyrus vernus (L.) and Orchis pallens (L.). Several monoterpenes (C10 compounds) were found as the main fragrance components of lathyrus, while sesquiterpenes (C15 compounds) were typical for the orchid. [source]


Floral scent of bat-pollinated species: West Africa vs. the New World

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2004
STEFAN PETTERSSON
Floral scent of seven West African bat-pollinated tree species, belonging to six families, was collected in situ from flowering individuals using headspace adsorption. The seven species shared neither any specific compounds nor any other discernible pattern in their floral scent composition. Most of the identified compounds are common in the floral scent of species pollinated by a variety of animals. Adansonia digitata (Bombacaceae) was the only African species found to have a substantial proportion of sulphur compounds in its floral scent. This feature contrasts with the sampled New World bat-pollinated plants, which frequently contain these compounds. The floral scent of Ceiba pentandra (Bombacaceae), native to both South America and Africa, contained no sulphur substances, contradicting a previous study in the New World that identified the major floral compounds as dimethyl disulphide and dimethyl trisulphide. We suggest that the differences in the floral scent of C. pentandra, including the absence of sulphur compounds in the African variety, result from the different selective regimes exerted by the Pteropotidae bats, in Africa, and Phyllostomidae bats, in the New World, that visit their flowers. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 161,168. [source]


The evolution of floral scent and insect chemical communication

ECOLOGY LETTERS, Issue 5 2010
Florian P. Schiestl
Ecology Letters (2010) 13: 643,656 Abstract Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common ,floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. ,Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of ,floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of ,floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction. [source]