Home About us Contact | |||
Flood Peak (flood + peak)
Selected AbstractsWood storage in a wide mountain river: case study of the Czarny Dunajec, Polish CarpathiansEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2005omiej Wy Abstract Storage of large woody debris in the wide, mountain, Czarny Dunajec River, southern Poland, was investigated following two floods of June and July 2001 with a seven-year frequency. Within a reach, to which wood was delivered only by bank erosion and transport from upstream, wood quantities were estimated for eighty-nine, 100 m long, channel segments grouped into nine sections of similar morphology. Results from regression analysis indicated the quantity of stored wood to be directly related to the length of eroded, wooded banks and river width, and inversely related to unit stream power at the flood peak. The largest quantities of wood (up to 33 t ha,1) were stored in wide, multi-thread river sections. Here, the relatively low transporting ability of the river facilitated deposition of transported wood while a considerable length of eroded channel and island banks resulted in a large number of trees delivered from the local riparian forest. In these sections, a few morphological and ecological situations led to the accumulation of especially large quantities of wood within a small river area. Very low amounts of wood were stored in narrow, single-thread sections of regulated or bedrock channel. High stream power facilitated transport of wood through these sections while the high strength of the banks and low channel sinuosity prevented bank retreat and delivery of trees to the channel. Considerable differences in the character of deposited wood existed between wide, multi-thread channel sections located at different distances below a narrow, 7 km long, channellized reach of the river. Wood deposited close to the downstream end of the channellized reach was highly disintegrated and structured into jams, whereas further downstream well preserved shrubs and trees prevailed. This apparently reflects differences in the distance of wood transport and shows that in a mountain river wider than the height of trees growing on its banks, wood can be transported long distances along relatively narrow, single-thread reaches but is preferentially deposited in wide, multi-thread reaches. Copyright © 2005 John Wiley & Sons, Ltd. [source] Multivariate homogeneity testing in a northern case study in the province of Quebec, CanadaHYDROLOGICAL PROCESSES, Issue 12 2009Fateh Chebana Abstract In regional frequency analysis, the examination of the regional homogeneity represents an important step of the procedure. Flood events possess multivariate characteristics which can not be handled by classical univariate regional procedures. For instance, classical procedures do not allow to assess regional homogeneity while taking into consideration flood peak, volume and duration. Chebana and Ouarda proposed multivariate discordancy and homogeneity tests. They carried out a simulation study to evaluate the performance of these tests. In the present paper, practical aspects are investigated jointly on flood peak and flood volume of a data set from the Côte-Nord region in the province of Quebec, Canada. It is shown that, after removing the discordant sites, the remaining ones constitute a homogeneous region for the volumes and heterogeneous region for the peaks. However, if both variables are jointly considered, the obtained region is possibly homogeneous. Furthermore, the results demonstrate the usefulness of the bivariate test to take into account the dependence structure between the variables representing the event, and to take advantage of more information from the hydrograph. Copyright © 2009 John Wiley & Sons, Ltd. [source] 3D float tracking: in situ floodplain roughness estimationHYDROLOGICAL PROCESSES, Issue 2 2009Menno Straatsma Abstract This paper presents a novel technique to quantify in situ hydrodynamic roughness of submerged floodplain vegetation: 3D float tracking. This method uses a custom-built floating tripod that is released on the inundated floodplain and tracked from shore by a robotic total station. Simultaneously, an acoustic Doppler current profiler (ADCP) collects flow velocity profiles and water depth data. Roughness values are derived from two methods based on (1) run-averaged values of water depth, slope and flow velocity to compute the roughness based on the Chézy equation, assuming uniform flow, (2) the equation for one-dimensional free surface flow in a moving window. A sensitivity analysis using synthetic data proved that the median value of the roughness, derived using method 2, is independent of (1) the noise in water levels, up to 9 mm, (2) bottom surface slope, and (3) topographic undulations. The window size should be at least 40 m for a typical lowland river setup. Field measurements were carried out on two floodplain sections with an average vegetation height of 0·030 (Arnhem) and 0·043 m (Dreumel). Method 1 resulted in a Nikuradse roughness length of 0·08 m for both locations. Method 2 gave 0·12 m for Arnhem and 0·19 m for Dreumel. In Arnhem, a spatial pattern of roughness values was present, which might be related to fractional vegetation cover or vegetation density during the flood peak. 3D float tracking proved a flexible and detailed method for roughness determination in the absence of waves, and provided an unrestricted view from shore. Copyright © 2008 John Wiley & Sons, Ltd. [source] ASSESSING FLOOD MITIGATION ALTERNATIVES IN SHIJR AREA IN METROPOLITAN TAIPEI,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006Chao-Hsien Liaw ABSTRACT: The Keelung River Basin in northern Taiwan lies immediately upstream of the Taipei metropolitan area. The Shijr area is in the lower basin and is subject to frequent flooding. This work applies micromanagement and source control, including widely distributed infiltration and detention/ retention runoff retarding measures, in the Wudu watershed above Shijr. A method is also developed that combines a genetic algorithm and a rainfall runoff model to optimize the spatial distribution of runoff retarding facilities. Downstream of Wudu in the Shijr area, five dredging schemes are considered. If 10-year flood flows cannot be confined in the channel, then a levee embankment that corresponds to the respective runoff retarding scheme will be required. The minimum total cost is considered in the rule to select from the regional flood mitigation alternatives. The results of this study reveal that runoff retarding facilities installed in the upper and middle parts of the watershed are most effective in reducing the flood peak. Moreover, as the cost of acquiring land for the levee embankment increases, installing runoff retarding measures in the upper portion of the watershed becomes more economical. [source] Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall simulation experimentsHYDROLOGICAL PROCESSES, Issue 13 2002J. Holden Abstract Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3,12 mm h,1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low-intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation-excess overland flow generation. Rainfall,runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady-state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd. [source] The impact of upland land management on flooding: insights from a multiscale experimental and modelling programmeJOURNAL OF FLOOD RISK MANAGEMENT, Issue 2 2008B.M. Jackson Abstract A programme of field experiments at the Pontbren catchment in Wales has, since autumn 2004, been examining the effects of land use change on flooding. The Pontbren catchment possesses a long history of artificial drainage of its clay soils and intensification of sheep farming. Increased flood runoff has been noted within the last decades, as has the mitigating effect of trees at field scale. To examine the local and catchment-scale effects of land management within the catchment, including the potential advantages of planting additional trees, a multidimensional physically based model has been developed and conditioned on data from an intensely instrumented hillslope. The model is used to examine the effects of planting a small strip of trees within a hillslope. Results demonstrate that careful placement of such interventions can reduce magnitudes of flood peaks by 40% at the field scale. The challenges associated with upscaling these results to the Pontbren and Upper Severn catchments are discussed. [source] ADJUSTMENT OF STREAM CHANNEL CAPACITY FOLLOWING DAM CLOSURE, YEGUA CREEK, TEXAS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2002Anne Chin ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long-term implications for sediment delivery through the system. [source] DAM-INDUCED MODIFICATIONS TO UPPER ALLEGHENY RIVER STREAMFLOW PATTERNS AND THEIR BIODIVERSITY IMPLICATIONS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2002C. Mark Cowell ABSTRACT: This study evaluates the streamflow characteristics of the upper Allegheny River during the periods preceding (1936 to 1965) and following (1966 to 1997) completion of the Kinzua Dam in northwestern Pennsylvania. Inter-period trends in seasonal patterns of discharge and peak flow at three downstream sites are compared to those at two upstream sites to determine the influence of this large dam on surface water hydrology. Climatic records indicate that significant changes in annual total and seasonal precipitation occurred over the twentieth century. Increased runoff during the late summer through early winter led to increased discharge both upstream and downstream during these months, while slightly less early-year rainfall produced minor reductions in spring flood peaks since 1966. The Kinzua Dam significantly enhanced these trends downstream, creating large reductions in peak flow, while greatly augmenting low flow during the growing season. This reduction in streamflow variability, coupled with other dam-induced changes, has important biodiversity implications. The downstream riparian zone contains numerous threatened/endangered species, many of which are sensitive to the type of habitat modifications produced by the dam. Flood dynamics under the current post-dam conditions are likely to compound the difficulties of maintaining their long-term viability. [source] |