Fishmeal Protein (fishmeal + protein)

Distribution by Scientific Domains


Selected Abstracts


Influence of dietary amino acid profiles on growth performance and body composition of juvenile grouper Epinephelus coioides

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2008
Z. Luo
Summary A feeding experiment was conducted to investigate the effects of dietary amino acid (AA) profiles on growth performance and body composition of juvenile grouper Epinephelus coioides (initial mean weight: 68.1 ± 1.0 g, mean ± SD). Five diets contained 30% fishmeal, 12% soy protein concentrate and 20% crystalline amino acids (CAAs); the control diet contained 54% fishmeal and 17% soy protein concentrate as intact protein sources. CAAs were added to the five diets to simulate the AA pattern found in white fishmeal protein (WFP), brown fishmeal protein (BFP), hen egg protein (HEP), grouper E. coioides juvenile protein (GJP) and red sea bream egg protein (REP), respectively. The highest WG and SGR were obtained in fish fed the control diet, followed by fish fed the diets with AA profiles of WFP and GJP. Fish fed the diets with AA profiles of BFP, REP and HEP showed relatively poor growth performance. Feed utilization showed a similar trend in growth parameters. Protein content of whole body among these treatments showed no significant differences (P > 0.05), but lipid content of whole body showed the highest value in the control group (P < 0.05). Dietary AA profiles significantly influenced plasma protein, cholesterol, triacylglycerol and glucose concentrations (P < 0.05). Dietary AA profiles significantly influenced the condition factor, hepatosomatic index and intraperitoneal fat ratio (P < 0.05). [source]


Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal-induced enteritis

JOURNAL OF FISH DISEASES, Issue 2 2000
A M Bakke-McKellep
Extracted soybean meal (SBM) in the diet for Atlantic salmon, Salmo salar L., causes an inflammatory response in the distal intestine. The morphological changes of the epithelial cells and a characterization of the inflammatory cell infiltrate of the distal intestinal mucosa were studied using a panel of enzyme and immunohistochemical markers. The salmon (average body weight 927 g) used in the study were fed either a fishmeal-based diet (control diet) or a diet in which 30% of the fishmeal protein was replaced with SBM protein (SBM diet). In salmon fed SBM, there were markedly reduced enzyme reactivities in the distal intestinal epithelial cells, both in the brush border [5,-nucleotidase (5,N), Mg2+-ATPase, alkaline phosphatase (ALP) and leucine aminopeptidase (LAP)] and in the intracellular structures [alkaline and acid phosphatase, non-specific esterase (NSE) and alanine aminopeptidase (AAP)]. There appeared to be an increased presence of cells of monocytic lineage, including macrophages, as well as neutrophilic granulocytes and immunoglobulin (Ig) M in the lamina propria of the SBM-fed fish. The mid intestine showed little response to the diet. The results suggest that toxic/antigenic component(s) of SBM affect the differentiation of the distal intestinal epithelial cells and may help explain the reduced nutrient digestibilities previously reported in salmonids fed extracted SBM. [source]


Partial or total replacement of fishmeal by solvent-extracted cottonseed meal in diets for juvenile rainbow trout (Oncorhynchus mykiss)

AQUACULTURE NUTRITION, Issue 6 2006
L. LUO
Abstract The effect of solvent-extracted cottonseed meal (SCSM) as a partial or total replacement of fishmeal was studied in juvenile rainbow trout (Oncorhynchus mykiss). Six experimental diets SCSM0, SCSM25, SCSM50, SCSM75, SCSM75A and SCSMT, containing a gradient of SCSM 0, 152, 305, 465, 460 and 610 g kg,1 to replace 0, 112.5, 225, 337.5, 337.5 and 450 g kg,1 fishmeal protein were fed to triplicate groups (initial body weight of 39.2 ± 0.1 g) for 8 weeks. The diet SCSM75A was supplemented with lysine and methionine, to be similar to SCSM0 for juvenile rainbow trout. Faeces were colleted after 4 weeks of normal feeding for apparent digestibility coefficients (ADC) of dry matter, crude protein and gross energy determination. Total replacement of fishmeal adversely affected growth performance. Fish fed with diet SCSMT had significantly (P < 0.05) lower weight gain, specific growth ratio, feed conversion efficiency (FCE) and protein efficiency ratio than fish fed with other diets. The FCE of SCSM75 and SCSM75A were significantly lower (P < 0.05) than those of fish fed with SCSM0 diets. The ADC of the dry matter of SCSM75 and SCSMT were significantly lower than the SCSM0 diet, and the ADC of crude protein and the energy of SCSMT were the lowest (P < 0.05). The ADC of threonine, proline, alanine, valine, isoleucine, leucine, lysine and methionine of fish fed with diet SCSMT were lower. Lysine and methionine supplement positively affected the ADC of SCS75A diet. There were no significant differences in the fish body composition. It is shown that SCSM can be utilized in the juvenile rainbow trout diet up to 305 g kg,1, to replace about 50% of fishmeal protein in this experiment. [source]


Partial replacement of fishmeal by soybean meal in diets for juvenile cobia (Rachycentron canadum)

AQUACULTURE NUTRITION, Issue 3 2005
Q.-C. ZHOU
Abstract An 8-week feeding experiment was conducted in floating cages (1.5 × 1.0 × 2.0 m) to determine the potential use of defatted soybean meal (roasted and solvent-extracted) as a partial replacement of fishmeal in the isonitrogenous (approximately 450 g kg,1 CP [crude protein]) diet for juvenile cobia with an initial average weight of about 8.3 g. Diets were formulated to include 0, 100, 200, 300, 400, 500 and 600 g kg,1 (diets D0, D10, D20, D30, D40, D50 and D60, respectively) of fishmeal protein being substituted by defatted soybean meal without methionine supplementation. The results showed that weight gain rate decreased significantly when the replacement level of fishmeal protein was increased from 400 g kg,1 to 500 g kg,1, and the D60 diet was the lowest in all groups. These results indicate that up to 400 g kg,1 of fishmeal protein can be replaced by defatted soybean meal without causing significant reduction in growth. Feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly affected by the replacement level of fishmeal protein being substituted by defatted soybean meal, when the replacement level of fishmeal protein was 200 g kg,1 (diet, D20), FCR was the lowest and PER was the highest. There were no significant differences in the moisture, lipid, crude protein and ash content in whole body and muscle, while lipid content in liver increased as the dietary soybean meal replacement levels increased. There were significant differences in haemoglobin, haematocrit, red blood cell, plasma glucose and triglyceride concentration in fish fed diets with different soybean meal replacement levels. Results of this trial indicated that the optimum level of fishmeal protein replacement with defatted soybean meal, determined by quadratic regression analysis was 189.2 g kg,1, on the basis of maximum weight gain. [source]