Home About us Contact | |||
Fish Metabolism (fish + metabolism)
Selected AbstractsStudies on the appearance of skeletal anomalies in red porgy: effect of culture intensiveness, feeding habits and nutritional quality of live preysJOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2010M. S. Izquierdo Summary Despite the great interest of red porgy as a new species for Mediterranean aquaculture, its commercial production is constrained by the high incidence of skeletal deformities occurring in this species under culture conditions. Several studies have been conducted to better understand the origin of these anomalies in this species, using different system intensiveness, rotifers enrichment products or rotifers docosahexaenoic acid content. The first study showed that culture intensification increased the number of fish with an extra vertebrae, what was probably related to the different nutritional quality of live preys employed in each treatment, since water temperature, salinity and genetic background were identical for the different batches of fish studied. Total incidence of skeletal abnormalities was higher in the intensive system, particularly cranial abnormalities and kyphosis in the cephalic vertebrae. In both rearing systems the most common skeletal anomalies were vertebral column disorders, lordosis and fused vertebrae, their localization along the column being affected by the culture intensiveness. Rotifer enrichment, predominantly its docosahexaenoic acid content significantly affected deformities occurrence. A marked positive effect of rotifer docosahexaenoic acid content was found on larval survival. X-ray studies denoted elevated levels of bone abnormalities associated, in both trials, to low docosahexaenoic acid content in live preys. Among different anomalies, the presence of fused vertebrae was the most frequent deformity for both rearing trials. A 50% reduction in the number of deformed fish for each type of deformity was obtained when the larvae were fed higher docosahexaenoic acid levels, denoting the important role of this fatty acid in bone development. Further studies are needed to elucidate the importance of essential fatty acids on the development of bone deformities in fish, since the functions of these fatty acids differ among them and can lead to very different effects in fish metabolism, including bone formation. [source] Restricted fish feeding reduces cod otolith opacityJOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2008H. Høie Summary The purpose of this work was to examine the effect of reduced feeding and constant temperature on cod otolith opacity. Three groups of juvenile cod were given restricted food rations at different times for 4 months, resulting in depressed somatic growth. Otolith opacity was measured on pictures of the otolith sections. The otolith carbonate deposited during the experimental period was generally opaque compared to the more translucent otolith material deposited prior to and after the experimental period, when the fish were kept in a pond and in sea-cages at higher temperatures. Large variations in otolith opacity were found between individual fish both within groups and between groups. In two of the three groups significantly more translucent otolith material was deposited in response to reduced feeding. Our results show that variations in feeding and hence fish growth resulted in variation in otolith opacity, but the effect was minor compared to that of variations in ambient temperature. The combined influence of these effects, which both act on fish metabolism, are most likely controlling the seasonal opacity changes observed in wild fish. Our results help explain the variations seen in fish at constant temperatures. [source] Finishing diets stimulate compensatory growth: results of a study on Murray cod, Maccullochella peelii peeliiAQUACULTURE NUTRITION, Issue 5 2007G.M. TURCHINI Abstract The effective implementation of a finishing strategy (wash-out) following a grow-out phase on a vegetable oil-based diet requires a period of several weeks. However, fish performance during this final stage has received little attention. As such, in the present study the growth performance during both, the initial grow-out and the final wash-out phases, were evaluated in Murray cod (Maccullochella peelii peelii). Prior to finishing on a fish oil-based diet, fish were fed one of three diets that differed in the lipid source: fish oil, a low polyunsaturated fatty acid (PUFA) vegetable oil mix, and a high PUFA vegetable oil mix. At the end of the grow-out period the fatty acid composition of Murray cod fillets were reflective of the respective diets; whilst, during the finishing period, those differences decreased in degree and occurrence. The restoration of original fatty acid make up was more rapid in fish previously fed with the low PUFA vegetable oil diet. During the final wash-out period, fish previously fed the vegetable oil-based diets grew significantly (P < 0.05) faster (1.45 ± 0.03 and 1.43 ± 0.05, specific growth rate, % day,1) than fish continuously fed with the fish oil-based diet (1.24 ± 0.04). This study suggests that the depauperated levels of highly unsaturated fatty acids in fish previously fed vegetable oil-based diets can positively stimulate lipid metabolism and general fish metabolism, consequently promoting a growth enhancement in fish when reverted to a fish oil-based diet. This effect could be termed ,lipo-compensatory growth'. [source] Effects of rapeseed oil replacement in fish feed on lipid composition and self-selection by rainbow trout (Oncorhynchus mykiss)AQUACULTURE NUTRITION, Issue 6 2009A. PETTERSSON Abstract Increased use of plant oils with different origins and quality in fish feed needs to be approached from a food safety and fish welfare point of view. Plant oils contain a number of bioactive minor lipid compounds that may affect the fish's metabolism and taste perception. This study focuses on the effect of replacing fish oil (FO) with different levels of cold-pressed rapeseed oil (RO) on the lipid composition in muscle and liver as well as on the preference by the fish. Rainbow trout (Oncorhynchus mykiss) were fed diets with a FO : RO ratio of 100 : 0, 75 : 25, 50 : 50 and 25 : 75 until twofold weight increase. In self-selecting feed trials of single rainbow trout, fish preferred the diet composed of only FO compared with the diets with RO but did not discriminate between different levels of RO. Plant sterols and their metabolites were found in liver of the fish fed RO diets, suggesting an effect on the sterol metabolism different from fish fed a 100% FO diet. The largest effects were seen in the fatty acid composition of the edible tissue of the fish with a decrease in 22:6n-3 and 20:5n-3 and an increase in 18:2n-6 and 18:1n-9. [source] |