Fish Fauna (fish + fauna)

Distribution by Scientific Domains


Selected Abstracts


Fish-based methods for assessing European running waters: a synthesis

FISHERIES MANAGEMENT & ECOLOGY, Issue 6 2007
S. SCHMUTZ
Abstract, The European Union, Water Framework Directive (WFD) requires monitoring of riverine fish fauna. When the WFD came into force in 2000, most of the EU member states did not have fish-based assessment methods compliant to WFD requirements. Therefore, the objectives of FAME (http://fame.boku.ac.at), a project under the fifth R&D Framework Programme of the European Commission were to develop, evaluate and implement a standardised fish-based method for assessing the ecological status of European running waters. This paper synthesises the outputs of FAME and defines future research needs. Two different methodologies were used: the so-called spatially based modelling and the site-specific modelling, the latter leading to the European Fish Index (EFI). The advantage of the EFI is that, despite being a single index, it is applicable to a wide range of environmental conditions across Europe precluding the need for inter-calibration. The EFI will support the WFD towards harmonised/standardised assessment and management of running waters in Europe, thus enabling comparative analyses of the ecological status of running waters across Europe. [source]


Challenges in developing fish-based ecological assessment methods for large floodplain rivers

FISHERIES MANAGEMENT & ECOLOGY, Issue 6 2007
J. J. DE LEEUW
Abstract, Large European floodplain rivers have a great diversity in habitats and fish fauna, but tend to be heavily modified. The complexity of these river systems and their multiple human impacts pose considerable challenges for assessment of their ecological status. This paper discusses: (1) the application of historical information on fish fauna and habitat availability to describe reference conditions; (2) responses of fish assemblages to human disturbance by comparing various rivers and river segments with different impacts and/or time series within rivers; (3) the role of floodplain water bodies in ecological assessment; and (4) monitoring of large rivers using different gears and sampling designs for main channels and floodplain habitats. The challenge for the future is to standardise and calibrate sampling methods and data to enhance the potential for ecological assessment of large rivers. [source]


Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes

FISHERIES MANAGEMENT & ECOLOGY, Issue 2 2004
A. O. Latini
Abstract The consequences of introducing Cichla cf. monoculus Spix & Agassiz, Astronotus ocellatus (Agassiz) and Pygocentrus nattereri Kner into lakes in the River Doce basin, Brazil, on richness, diversity and efficiency of aquatic macrophytes as natural refugia to native fishes was investigated. Samples were taken from lakes with and without alien fishes in areas with and without aquatic macrophytes. The presence of alien fishes reduced richness and diversity of the native fish community. The refugia function, which could be attributed to the clustering of aquatic macrophytes, does not exist in these lakes probably because the alien fishes exploit such habitats for reproduction. Since introductions threaten the native fish diversity of the region, studies on regional dispersion and factors that minimise the spread of alien fishes are needed. [source]


High abundance of larval rockfish over Cobb Seamount, an isolated seamount in the Northeast Pacific

FISHERIES OCEANOGRAPHY, Issue 3 2001
John F. Dower
The larval fish community in the region of Cobb Seamount (500 km west of Oregon) is dominated by myctophid species commonly encountered in the subarctic North Pacific. However, during a survey in June 1992, the ichthyoplankton community within 30 km of the seamount summit was almost completely dominated by larvae of various rockfish (Sebastes) species. Given their very small size (and hence very young age) and the fact that they occurred only rarely in samples collected > 30 km from the seamount summit, we conclude that these Sebastes larvae were produced locally over Cobb Seamount. Previous studies have shown that the Cobb fish fauna is dominated by various Sebastes spp. and that, unlike other fish present on the seamount, the rockfish populations may be self-recruiting. We suggest that a persistent clockwise (i.e. downwelling) eddy, consistent with a stratified Taylor cone, plays a critical role in retaining larval rockfish over Cobb Seamount and may contribute to the process of self-recruitment. The key to the success of rockfish on Cobb and other shallow Northeast Pacific seamounts seems to be linked to their viviparous life history. [source]


Changes in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced species

FRESHWATER BIOLOGY, Issue 8 2010
ALBERTO MACEDA-VEIGA
Summary 1. North-eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step-wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of "biotic resistance" to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments. [source]


Fish community comparisons along environmental gradients in lakes of France and north-east USA

GLOBAL ECOLOGY, Issue 3 2007
Pascal Irz
ABSTRACT Aim, To assess whether eight traits of fish communities (species richness, three reproductive traits and four trophic traits) respond similarly to environmental gradients, and consequently display convergence between the lakes of France and north-east USA (NEUSA). Location, 75 French and 168 north-east USA lakes. Methods, The data encompass fish surveys, the assignment of species into reproductive and trophic guilds, and environmental variables characterizing the lakes and their catchments. The analytical procedure was adapted from the recommendations of Schluter (1986) [Ecology, 67, 1073,1085]. Results, The comparison of the regional pools of lacustrine fishes indicated that NEUSA was about twice as speciose as France, mostly due to higher species turnover across lakes, although NEUSA lakes were consistently about 20% more speciose than French lakes for a given surface area. Warmer environments were consistently inhabited by a higher proportion of phytophilous and guarder species than were colder lakes. Hence there was convergence in community reproductive traits. Conversely, there was no evidence of convergence in the trophic structure of lacustrine fish communities between regions. Main conclusions, The influence of temperature on the availability and quality of spawning substrates appears to be a major constraint on present-day lacustrine fish communities. In parallel, phylogenetic constraints, past events such as the diversification of the North American fish fauna, and selective extinctions during Pleistocene glaciations and subsequent recolonizations contribute to explaining the dissimilarities between the communities of the two regions and differences in their relationship to the environment. [source]


Seven Decades of Change in the Zooplankton (s.l.) of the Nile Delta Lakes (Egypt), with Particular Reference to Lake Borullus

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2008
Henri J. Dumont
Abstract Around the 1930s, the zooplankton (and benthos) of the Nile delta lakes, and Lake Borullus in particular, had a mixed, eutrophic facies, with marine and mesohaline elements dominant for about eight months per year, and freshwater species taking over during the four months of the Nile flood. After the Aswan dam became operational, this regime changed: a steady supply of agricultural drainage water of Nilotic origin consistently freshened the delta. Thus, except in the immediate vicinity of their outlet to the sea, the lakes became almost fresh. Only during the rare and short-lived (one-three weeks) occasions when Aswan closes in winter, marine water is sucked in, and along with it, a saline fauna temporarily becomes re-established in the east and centre of lake Borullus, and presumably of the other delta lakes as well. This marine fauna remained the same over 70+ years of observations. The freshwater component, in contrast, partly nilotic, partly mediterranean, changed deeply over time. First, the fraction of species from temporary waters disappeared, as well as (among copepods and cladocerans) all large-bodied species. Several cladocerans and copepods with a euro-mediterranean range appeared and diluted the pre-existing Afrotropical fauna. The abundance of small cladocerans and, especially, rotifers increased by a factor ten or more. This latter change is believed to reflect two pressures. In a first phase, a re-arrangement of the lake's fish fauna (a top down force) occurred. Freshwater fish replaced marine diadromic species, and their predation pressure on the zooplankton preferentially removed large-bodied prey. In a second phase, increased agricultural drainage caused eutrophication (a bottom-up force) and larger filtrators (cladocerans, some copepods) began to be replaced by small filtrators (rotifers). (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Guidelines for restoring connectivity around water mills: a population genetic approach to the management of riverine fish

JOURNAL OF APPLIED ECOLOGY, Issue 3 2009
Joost A. M. Raeymaekers
Summary 1While freshwater systems provide important goods and services for society, they are threatened by human activity. Fragmentation is one of the most serious ecological concerns in the riverine environment. 2Historical and cultural values may conflict with nature restoration. Here we use the Zwalm sub-basin (Scheldt basin, Belgium) as a case study for reconciling the restoration of the native fish fauna with the preservation of historical water mills (320,1000 years old). 3We assessed the genetic structure of a barrier-sensitive species, the three-spined stickleback Gasterosteus aculeatus, to estimate the impact of fragmentation on a local to catchment scale. We show how population genetic approaches may be used to generate guidelines for restoration and management, and advance the science of river restoration. 4Dispersal was lower in above- than in below-mill populations, and water mills provoked an average loss of almost 4% of the genetic variation. This loss accumulated to 40% over the entire system (~23 km, 13 barriers). The impact of individual mills strongly increased with upstream distance and water mill height. One mill provoked significant genetic differentiation, despite the presence of a fish passage. 5This detailed picture of the genetic connectivity in stickleback is indicative for the basin's depauperate fauna. Many species share the same migratory pathways and barriers to dispersal. The physical properties of the water mills are likely to have similar effects on species with a similar genetic structure to stickleback. 6Synthesis and applications. Population genetic studies may be particularly useful during the planning of river restoration and associated ecological studies. In the case of the Zwalm sub-basin, we propose a number of management actions, such as building new fish passages and translocating individuals to above-mill populations. These will counter the negative impact of the water mills on the genetic variation in aquatic fauna, whilst retaining their cultural,economical value and limiting the restoration costs. Simulations suggest that reassessment of stickleback genetic structure after a decade should reveal whether or not restoration actions have been effective. [source]


Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages

JOURNAL OF APPLIED ECOLOGY, Issue 1 2006
D. PONT
Summary 1The need for sensitive biological measures of aquatic ecosystem integrity applicable at large spatial scales has been highlighted by the implementation of the European Water Framework Directive. Using fish communities as indicators of habitat quality in rivers, we developed a multi-metric index to test our capacity to (i) correctly model a variety of metrics based on assemblage structure and functions, and (ii) discriminate between the effects of natural vs. human-induced environmental variability at a continental scale. 2Information was collected for 5252 sites distributed among 1843 European rivers. Data included variables on fish assemblage structure, local environmental variables, sampling strategy and a river basin classification based on native fish fauna similarities accounting for regional effects on local assemblage structure. Fifty-eight metrics reflecting different aspects of fish assemblage structure and function were selected from the available literature and tested for their potential to indicate habitat degradation. 3To quantify possible deviation from a ,reference condition' for any given site, we first established and validated statistical models describing metric responses to natural environmental variability in the absence of any significant human disturbance. We considered that the residual distributions of these models described the response range of each metric, whatever the natural environmental variability. After testing the sensitivity of these residuals to a gradient of human disturbance, we finally selected 10 metrics that were combined to obtain a European fish assemblage index. We demonstrated that (i) when considering only minimally disturbed sites the index remains invariant, regardless of environmental variability, and (ii) the index shows a significant negative linear response to a gradient of human disturbance. 4Synthesis and applications. In this reference condition modelling approach, by including a more complete description of environmental variability at both local and regional scales it was possible to develop a novel fish biotic index transferable between catchments at the European scale. The use of functional metrics based on biological attributes of species instead of metrics based on species themselves reduced the index sensitivity to the variability of fish fauna across different biogeographical areas. [source]


Efficacy of a nature-like bypass channel in a Portuguese lowland river

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 5 2005
J. M. Santos
Summary Throughout Europe in the last decade there has been a steady shift away from more technical fish pass designs to more nature-like passes, such as nature-like bypass channels. Upstream fish passage in a nature-like bypass channel was investigated in a lowland river, the Lima River, for 117 days from March 2000 to May 2002. Fish passage was recorded using an automatic video recording system. Electrofishing samples within the bypass and below the weir were compared with species abundance found on the tape recordings. More than 7500 individuals of eight species passed through the bypass channel. Species composition was dominated by striped mullet (65.3%) and potamodromous species (34.3%), which used the bypass mainly at night. Of the environmental variables considered, bypass discharge explained most of the variation in the number of cyprinids, whereas water temperature was more important for diadromous species. Comparing species composition below the weir using passage recordings provided a useful tool to assess species efficacy of the bypass, although biological requirements should also be taken into account. This study proved the efficacy of the bypass for passage of almost all occurring species and life stages and also for providing suitable habitat for fish fauna, highlighting the use of these facilities for river restoration schemes. [source]


Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India

JOURNAL OF BIOGEOGRAPHY, Issue 1 2004
Neelesh Dahanukar
Abstract Aim, To study (1) the large-scale distribution patterns of freshwater fishes in the Western Ghats of India; (2) the endemism and uniqueness of the fishes in various zones; and (3) the threat status of fishes by categorizing them under low risk (LR), vulnerable (VU), endangered (EN) and critically endangered (CR). Location, The Western Ghats of India. Methods, The scientific literature describing the freshwater fishes of the Western Ghats was reviewed. Data describing the lists of the species were extracted and complied. The species accumulation curve was plotted using Michaelis,Menten-like equation. The Western Ghats was divided into six zones and similarity of the species was calculated using Jacquard's index. Results, Literature to date records 288 species belonging to 12 orders, 41 families and 109 genera, of which 118 species are endemic and 51 are unique. However, the species accumulation curve shows that there might be 345 species in this region, indicating that 16% species have not been recorded to date. An analysis of the distribution pattern of fishes in the Western Ghats suggests that the southern region is more diverse than the northern and central regions. The southern region shows high endemism and high uniqueness while the northern region shows high endemism but less uniqueness. The similarity index between the zones indicates that as the distance between the zones increases similarity decreases. The status of 105 of 288 species was not known due to data deficiency but among the remaining 183 species, 58 species were categorized as LR, 41 as VU, 54 as EN, 24 as CR while the remaining six species were introduced. Conclusions, The distribution patterns of fishes in the Western Ghats are discussed in accordance with the geography of Western Ghats, its climatic conditions and ,Satpura Hypothesis'. The threat status of fishes found in Western Ghats suggests that at least 41% of fish fauna is threatened by either being VU, EN or CR. Implication of potent conservation measures is necessary to conserve the fish fauna of Western Ghats. [source]


Diversity, extinction risk and conservation of Malaysian fishes

JOURNAL OF FISH BIOLOGY, Issue 9 2010
V. C. Chong
A total of 1951 species of freshwater and marine fishes belonging to 704 genera and 186 families are recorded in Malaysia. Almost half (48%) are currently threatened to some degree, while nearly one third (27%) mostly from the marine and coral habitats require urgent scientific studies to evaluate their status. Freshwater habitats encompass the highest percentage of threatened fish species (87%) followed by estuarine habitats (66%). Of the 32 species of highly threatened (HT) species, 16 are freshwater and 16 are largely marine,euryhaline species. Fish extinctions in Malaysia are confined to two freshwater species, but both freshwater and marine species are being increasingly threatened by largely habitat loss or modification (76%), overfishing (27%) and by-catch (23%). The most important threat to freshwater fishes is habitat modification and overfishing, while 35 species are threatened due to their endemism. Brackish-water, euryhaline and marine fishes are threatened mainly by overfishing, by-catch and habitat modification. Sedimentation (pollution) additionally threatens coral-reef fishes. The study provides recommendations to governments, fish managers, scientists and stakeholders to address the increasing and unabated extinction risks faced by the Malaysian fish fauna. [source]


Correlations between type-indicator fish species and lake productivity in German lowland lakes

JOURNAL OF FISH BIOLOGY, Issue 4 2006
X.-F. Garcia
Morphotypes for 67 lakes in the German lowlands were derived, based on maximum depth and mixis type. A threshold of 11 m maximum depth was identified to be the best level to discriminate shallow from deep lake morphotypes. The fish communities in these two morphotypes were significantly different. Indicator species analyses based on fish biomasses found vendace Coregonus albula in deep lakes and ruffe Gymnocephalus cernuus, bream Abramis brama, white bream Abramis bjoerkna, roach Rutilus rutilus, pikeperch Sander lucioperca and small perch Perca fluviatilis in shallow lakes to be the most representative species of their communities. Lake productivity was closely related to biomass and in part abundance of the type-indicator species, with vendace declining with increasing chlorophyll a concentration in the deep lakes, whereas biomass of pikeperch, bream, white bream and ruffe increased and biomass of small perch decreased with increasing chlorophyll a. These results indicate that assessment of ecological integrity of lakes by their fish fauna is generally possible, if lakes are initially separated according to a depth-related morphotype before the assessment, and if eutrophication is considered to be the main anthropogenic degradation. [source]


The Triassic fish faunas of the Cuyana Basin, Western Argentina

PALAEONTOLOGY, Issue 2 2010
ADRIANA LÓPEZ-ARBARELLO
Abstract:, The continental deposits of the Cuyana Basin, western Argentina, have yielded the most diverse, but so far almost unstudied, Triassic ichthyofaunas of South America. Here, we review these faunas and show that only eight of the 29 named taxa can be considered valid, including the chondrostean Neochallaia, the acrolepid Challaia, Guaymayenia, a taxon of uncertain affinities, and five species of the perleidiform family Pseudobeaconiidae. The first three taxa most probably come from Middle Triassic sediments, while the pseudobeaconiids are of Late Triassic age. Other material, although not diagnostic, probably represents other species, and thus, the diversity of actinopterygians in the Cuyana basin is certainly higher than currently recognized. For the Late Triassic fish fauna, the absence of crown-group neopterygians and a single record of a sarcopterygian is noteworthy and probably indicates some degree of endemism in this fauna, also supported by the high abundance of pseudobeaconiids, which are unknown from other areas. Furthermore, on the basis of the age indicated by the fishes and the available geological information, we discuss the age of the local fauna of the Cerro Bayo, close to the city of Mendoza, and the Agua de la Zorra Formation, Uspallata. [source]


Springs in time: fish fauna and habitat changes in springs over a 20-year interval

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2008
Elizabeth A. Bergey
Abstract 1.Despite the range of threats to springs and the number of spring-endemic species, studies of temporal changes in the fauna of springs have rarely been reported. Changes in the fish of 22 Oklahoma (USA) springs were compared among surveys in 1981, 1982, and 2001. 2.Twenty-year assemblage differences were correlated with physical alteration of specific springs and stocking of native fish, which was made possible by past habitat changes that produced pools. Physical alteration of springs is a major ongoing threat to Oklahoma springs. 3.Variation in spring fish assemblages among the three surveys was apparently affected by fish movement in and out of springs, and the greater rain-induced connectivity between springs and streams during one year. 4.Although flow reduction is a commonly cited threat to springs, there was little evidence of flow reduction impacts in this study because Oklahoma springs may have been affected prior to 1981 and high-flow springs, which most often contain fish, were in areas with low groundwater water use. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Morphological divergence of North-European nine-spined sticklebacks (Pungitius pungitius): signatures of parallel evolution

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010
GÁBOR HERCZEG
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine-spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine-spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine-spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three-spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 403,416. [source]


The ecological morphology of darter fishes (Percidae: Etheostomatinae)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010
ROSE L. CARLSON
Darters are a species-rich radiation of small benthic and benthic-associated stream fishes that comprise approximately 20% of the diversity of the North American freshwater fish fauna. Here, we gather data from 165, or 87%, of described species and use this information to characterize the morphological diversity of the darter radiation. We focus on characters of the oral jaws known to function in prey capture and consumption in other perciform taxa in order to explicitly link morphological diversity to ecological diversity. In addition to a quantitative description of the morphospace occupied by darters, we identify several instances of significant morphological convergence. We also describe three groups of darter species that exhibit unusual jaw morphologies that are used in previously undescribed prey capture behaviours. Despite these new ecomorphs, we find that darters exhibit relatively low variation in trophic morphology when compared with two other radiations of teleost fishes, and that the observed variation is related more to differences in microhabitat use than to differences in prey type. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 30,45. [source]


Convergence of fish communities from the littoral zone of reservoirs

FRESHWATER BIOLOGY, Issue 6 2009
KEITH B. GIDO
Summary 1.,Understanding factors that regulate the assembly of communities is a main focus of ecology. Human-engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2.,We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3.,We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4.,The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long-term dynamics of impounded river networks. [source]


Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins

JOURNAL OF BIOGEOGRAPHY, Issue 9 2008
Kirk O. Winemiller
Abstract Aim, The aim of this study was to determine whether the Casiquiare River functions as a free dispersal corridor or as a partial barrier (i.e. filter) for the interchange of fish species of the Orinoco and Negro/Amazon basins using species assemblage patterns according to geographical location and environmental features. Location, The Casiquiare, Upper Orinoco and Upper Negro rivers in southern Venezuela, South America. Methods, Our study was based on an analysis of species presence/absence data and environmental information (11 habitat characteristics) collected by the authors and colleagues between the years 1984 and 1999. The data set consisted of 269 sampled sites and 452 fish species (> 50,000 specimens). A wide range of habitat types was included in the samples, and the collection sites were located at various points along the entire length of the Casiquiare main channel, at multiple sites on its tributary streams, as well as at various nearby sites outside the Casiquiare drainage, within the Upper Orinoco and Upper Rio Negro river systems. Most specimens and field data used in this analysis are archived in the Museo de Ciencias Naturales in Guanare, Venezuela. We performed canonical correspondence analysis (CCA) based on species presence/absence using two versions of the data set: one that eliminated sites having < 5 species and species occurring at < 5 sites; and another that eliminated sites having < 10 species and species occurring at < 10 sites. Cluster analysis was performed on sites based on species assemblage similarity, and a separate analysis was performed on species based on CCA loadings. Results, The CCA results for the two versions of the data set were qualitatively the same. The dominant environmental axis contrasted assemblages and sites associated with blackwater vs. clearwater conditions. Longitudinal position on the Casiquiare River was correlated (r2 = 0.33) with CCA axis-1 scores, reflecting clearwater conditions nearer to its origin (bifurcation of the Orinoco) and blackwater conditions nearer to its mouth (junction with the Rio Negro). The second CCA axis was most strongly associated with habitat size and structural complexity. Species associations derived from the unweighted pair-group average clustering method and pair-wise squared Euclidean distances calculated from species loadings on CCA axes 1 and 2 showed seven ecological groupings. Cluster analysis of species assemblages according to watershed revealed a stronger influence of local environmental conditions than of geographical proximity. Main conclusions, Fish assemblage composition is more consistently associated with local environmental conditions than with geographical position within the river drainages. Nonetheless, the results support the hypothesis that the mainstem Casiquiare represents a hydrochemical gradient between clearwaters at its origin and blackwaters at its mouth, and as such appears to function as a semi-permeable barrier (environmental filter) to dispersal and faunal exchanges between the partially vicariant fish faunas of the Upper Orinoco and Upper Negro rivers. [source]


The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010
Aaron P. Jenkins
Abstract 1.Tropical, high islands of the Pacific have developed unique freshwater fish faunas that are currently threatened by a range of human activities. This paper documents distinct differences in life history strategies from fish communities found in streams of Fiji compared with fish assemblages in freshwater systems on larger continental land masses. While river systems of northern Australia and Papua New Guinea have a high proportion of freshwater residents, the Fiji fauna is dominated by amphidromous gobiids that migrate across a broad range of habitats throughout their life cycle. 2.The number of amphidromous fish species and the number of all fish species in mid-reaches of Fiji rivers are significantly affected by loss of catchment forest cover and introductions of tilapia (Oreochromis spp.). On average, stream networks with established Oreochromis spp. populations have 11 fewer species of native fish than do intact systems. The fish that disappear are mostly eleotrid and gobiid taxa, which have important dietary and economic value. 3.Based on the strong links between catchment land clearing, non-native species introductions and loss of migratory pathways for freshwater fish, spatial information was compiled on a national scale to identify priority areas for conservation in Fiji with intact connectivity between forests, hydrologic networks and coral reefs. Areas with high connectivity included remote, largely undeveloped regions of Vanua Levu (Kubulau, Wainunu, Dama, Udu Point, Natewa, Qelewara) and Taveuni, as well as smaller mapping units (Naikorokoro, Sawakasa) of Viti Levu with low density of roads and high relative amounts of mangroves and reefs. 4.These priority areas for conservation can only be effectively protected and managed through cross-sectoral collaboration and ecosystem-based approaches. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Priority habitats for the conservation of large river fish in the Ganges river basin

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2007
Uttam Kumar Sarkar
Abstract 1.Three classes of habitat used by groups of fish species classified as conservation and management priorities were developed for the Gerua River (also known as the Girwa River, Karnali River) in the Ganges river basin. This river is large (mean annual discharge ca 1500 m3 s,1, up to 900 m wide), surrounded by protected lands of India and Nepal, and upstream of major diversions and river alterations. 2.Fish and habitat sampling was conducted at 45 sites from 2000 to 2003. Data were analysed for 2172 fish of 14 species. Species and life stages found occupying a statistically distinct subset of the river habitats were grouped to identify classes of river habitat for conservation. 3.Most species and life-stage groups specialized on specific habitat conditions revealed by multivariate analyses of variance and a principal component analysis. The most numerous and diverse group (six species, 15 life stages) was associated with deep depositional habitats with sandy substrate. Two species covering three life stages were primarily oriented to erosional habitat marked by fast current velocity with pebble and cobble substrate. A third group of three species of adults and juveniles were intermediate in habitat use. 4.River conservation for fish faunas should maintain both erosional and depositional channel habitats with depths, substrates, and current velocity inclusive of the ranges reported. The erosional and depositional nature of the key habitats requires that rivers be maintained with flows capable of channel-forming functions. Copyright © 2006 John Wiley & Sons, Ltd. [source]