Fish Communities (fish + community)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Fish Communities

  • native fish community

  • Terms modified by Fish Communities

  • fish community data
  • fish community structure

  • Selected Abstracts


    The Role of Fish Communities in Water Quality Management of a Large Shallow Lake

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 5 2003
    István Tátrai
    Abstract Management measures of Lake Balaton such as wetland reconstruction at the main inflow to the lake along with the "unplanned" commercial fishery led to great changes in the density and biomass of fish populations. There was no significant difference in CPUE data between the two, eastern and western, basins. Biomass of total fish stock in Lake Balaton has decreased substantially, 2,3 times between 1991,1999, and ranges between 120,194 kg ha,1. Bottom-up effects are more important than the top-down effects due to the impact of internal nutrient load. Changes in the biomass and thus the activity of omnivorous fish in the lake lowered the intensity of various indirect effects and feedback mechanisms causing changes in the nutrient metabolism of the lake. Intensified fishery effort in Lake Balaton did not result in an increased stock of piscivores. The ratio of piscivores and omnivores remained at 5% during the whole study period. Despite this low piscivores to omnivores ratio, the water quality has improved in all basins. [source]


    Fish communities in two environmentally different estuarine systems of Mexico

    JOURNAL OF FISH BIOLOGY, Issue 2002
    A. Raz-Guzman
    Mexico has two main types of coasts, an Amero-trailing-edge coast along the Gulf of Mexico and a collision coast along the Pacific, each of which determine the characteristics of their coastal lagoons. The lagoons along the Gulf of Mexico are extensive, tropical and rich in seagrass beds and mangroves, and among these Laguna Madre has 84 species of fishes. In contrast, the lagoons along the Pacific are small, closed, mostly oligohaline and usually lack seagrass beds, and among these Laguna Salinas del Padre has 19 species of fishes. This marked difference in species richness, in turn, has a direct effect on the size and value of the fisheries, as these are regional in the first case and local and seasonal in the second. [source]


    Long term effects of cormorant predation on fish communities and fishery in a freshwater lake

    ECOGRAPHY, Issue 2 2001
    Henri Engström
    Cormorant impact upon natural fish populations has long been debated but little studied because of the requirements of sound data that are often hard to fill. In this study I have monitored fish community composition/abundance before and after a cormorant colony was established in a high productive lake, Ymsen, of south-central Sweden. Data on fish abundance before cormorant establishment enabled me to control for changes in fish densities prior to cormorant colonisation. To control for possible changes in fish populations caused by factors other than cormorant predation (i.e. large-scale regional changes due to climate) data were compared with a control lake, Garnsviken, with no cormorants. Since Lake Ymsen also harbour an important commercial fishery, cormorant impact upon fishery yields was evaluated. The most important fish species in the diet of the cormorants were ruffe (75% by number), roach (11%) and perch (10%). Except for perch, commercially important fish made up a very small fraction of the cormorant diet. Eel, the most important fish for the fishery, was absent in the cormorant diet, pikeperch constituted 0.2% and pike 1.5%. Estimated fish outtake by the cormorants was 12.8 kg ha,1 yr,1 compared to 8.6 kg ha,1 yr,1 for the fishery. Despite considerable fish withdrawal by the cormorants, fish populations did not seem to change in numbers or biomass. The present study indicates that cormorant impact upon fish populations in Lake Ymsen was small and probably in no case has led to declines of neither commercial nor of non-commercial fish species. Still, the number of breeding cormorants in Lake Ymsen, in relation to foraging area, is among the highest known for Swedish lakes. [source]


    Relating streamflow characteristics to specialized insectivores in the Tennessee River Valley: a regional approach,

    ECOHYDROLOGY, Issue 4 2008
    Rodney R. Knight
    Abstract Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance), and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was completed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession can strand fish in pools and other areas that are disconnected from flowing water and remove invertebrates as food sources that were suspended during high-streamflow events. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica

    ECOLOGY OF FRESHWATER FISH, Issue 3 2010
    P. C. Esselman
    Esselman PC, Allan JD. Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica. Ecology of Freshwater Fish 2010: 19: 439,454. © 2010 John Wiley & Sons A/S Abstract,,, While the abiotic factors important to freshwater fish assemblages at a reach scale are well understood, studies of larger scale constraints have yielded variable conclusions, spurring a need for further studies in new biogeographic contexts. This study investigated the importance of catchment- and reach-scale abiotic factors to variation in freshwater fish assemblages in rivers of northeastern Mesoamerica. Abiotic variables and fish data from 72 sampling sites on main stem rivers of Belize were used with partial constrained ordination to determine the proportion of spatially structured and unstructured variation in fish presence and absence, relative abundance, and community metrics explained by catchment- and reach-scale environmental factors. Results showed that, combined, catchment and reach variables explained a large portion of the total variation in the fish assemblage data (54,75%), and that catchment environment explained a greater portion of variation (42,63%) than reach environment (34,50%). Variables representing landscape position (local elevation, watershed area) and their reach-level correlates (channel width, depth variation, and substrate) correlated strongly to the fish assemblage data. Our results suggest that landscape-scale factors have a stronger relative influence on assemblages than environmental conditions at the reach scale within our study area. These results contrast with past findings that showed greater local scale influence in landscapes with low anthropogenic disturbance levels. Our findings suggest that biodiversity conservation efforts should consider assemblage variation across a longitudinal gradient, and that a multi-catchment region is a biologically relevant scale for fish conservation planning and coordination in northeastern Mesoamerica. [source]


    Effects of stocked trout on native fish communities in boreal foothills lakes

    ECOLOGY OF FRESHWATER FISH, Issue 2 2010
    Leslie E. Nasmith
    Nasmith LE, Tonn WM, Paszkowski CA, Scrimgeour GJ. Effects of stocked trout on native fish communities in boreal foothills lakes. Ecology of Freshwater Fish 2010: 19: 279,289. © 2010 John Wiley & Sons A/S Abstract,,, Ecological effects of stocking nonnative trout into lakes are receiving increased attention, especially in alpine environments. We assessed effects of stocked trout on native forage fishes in the boreal foothills of Alberta (Canada) by comparing fish density, population size structure and spatial and temporal activities in stocked and unstocked lakes over 3 years (2005,2007). The numerically dominant dace (primarily Phoxinus spp.) were larger in stocked lakes, consistent with size-limited predation. Dace were also more crepuscular and concentrated on the lake-bottom in stocked lakes, compared to more daytime activity in the water column in unstocked lakes. There were, however, no demonstrable effects of trout on the abundance of forage fish. The lack of major population-level impacts of stocked trout suggests that current stocking practices, characteristics of boreal foothill lakes (e.g. thermal structure, abundant invertebrates, dense macrophytes) and/or behavioural adjustments of forage fish contribute to healthy native fish populations in our stocked lakes. [source]


    Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunity

    ECOLOGY OF FRESHWATER FISH, Issue 1 2010
    P. H. M. De Macedo-Soares
    de Macedo-Soares PHM, Petry AC, Farjalla VF, Caramaschi EP. Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunity. Ecology of Freshwater Fish 2010: 19: 7,18. © 2009 John Wiley & Sons A/S Abstract,,, We assessed the influence of hydrological connectivity in structuring fish communities through seasonal samplings of environmental variables and fishes in a coastal lagoon and associated pools in the Restinga de Jurubatiba National Park, Brazil. Community structure attributes such as species richness, numerical density and biomass, Shannon,Wiener diversity index and evenness were compared between periods of the lowest and highest hydrological connectivity, while the environmental gradient and fish zonation were explored through ordination techniques. The greater hydrological connectivity established in the rainy season promoted the homogenisation of most environmental variables and fish species, which differed markedly from the arrangement observed in the dry season. Despite variation in fish species composition, community attributes showed non-significant differences between the dry and rainy seasons. The patterns of composition and numerical density in pools were strongly influenced by local factors, especially salinity, dissolved oxygen, total phosphorous concentration and water colour in the dry season, in addition to total nitrogen concentration and depth in the rainy season. Comparable to the role played by flood pulses in river-floodplain systems, the hydrological connectivity in these tropical coastal waterbodies seems to strongly influence fish community structure, and, therefore to determine regional biodiversity. [source]


    Discontinuity in fish assemblages across an elevation gradient in a southern Appalachian watershed, USA

    ECOLOGY OF FRESHWATER FISH, Issue 1 2005
    J. L. Robinson
    This region is noted for extreme topographical relief, high cumulative annual rainfall and many rare and endemic plants and animals. The study area encompasses a portion of the Blue Ridge Escarpment and the associated Brevard Fault Zone. We hypothesise that major waterfalls and cascade complexes have acted to limit invasion and colonisation by fishes from downstream. This hypothesis is supported by longitudinal fish assemblage patterns in our study streams. Fish species richness in Toxaway River increased from 4 to 23 between Lake Toxaway and Lake Jocassee, a distance of 10 river km. We found similar discontinuities in neighbouring Horsepasture River and Bearwallow Creek. We found no instances of species replacement along this elevation gradient, and the trend in increased diversity downstream showed discontinuities coincident with sharp elevation breaks. With regard to theories posited to explain community formation in headwater stream fish communities (especially in those characterised by high topographical relief), we suggest coloniser ,access' may be more important than other factors including competitive interactions. Resumen 1. En este estudio examinamos patrones en los ensamblajes de peces de los ríos Toxaway y Horsepasture, dos ríos de elevada altitud de Carolina del Norte (USA). Esta región se caracteriza por rupturas topografías extremas, gran cantidad de lluvia anual y numerosos endemismos animales y vegetales. El estudio incluye una porción de la región del Blue Ridge Escarpment y la zona asociada de Brevard Fault. 2. Nuestra hipótesis es que los complejos sistemas de cataratas han limitado la invasión y la colonización de los peces desde las localidades aguas abajo. Los patrones longitudinales de los ensamblajes de peces fueron consistentes con esta hipótesis. La riqueza de las especies de peces en el río Toxaway incrementó desde 4 a 23 especies en una distancia de 10 Km de río, entre los lagos Taxoway y Jocasee. Encontramos discontinuidades similares en los vecinos ríos Horsepasture y Bearwallow. No encontramos ningún caso de re-emplazamiento de especies a lo largo del gradiente de altitud y la tendencia a incrementar la diversidad aguas abajo mostró discontinuidades que coincidieron con rupturas de altitudes. 3. Al considerar teorías que explican la formación de comunidades en zonas altas de ríos (especialmente en regiones caracterizadas por rupturas topografías), sugerimos que el acceso para los colonizadores puede ser más importante que otros factores incluyendo interacciones competitivas. [source]


    Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection

    FISHERIES MANAGEMENT & ECOLOGY, Issue 6 2007
    R. A. A. NOBLE
    Abstract, The functional ecological guild approach is the cornerstone for the development of Indices of Biotic Integrity and multi-metric indices to assess the ecological status of aquatic systems. These indices combine metrics (unit-specific measures of a functional component of the fish community known to respond to degradation) into a single measure of ecological assessment. The guild approach provides an operational unit linking individual species characteristics with the community as a whole. Species are grouped into guilds based on some degree of overlap in their ecological niches, regardless of taxonomic relationships. Despite European fish species having been classified into ecological guilds, classification has not been standardised Europe-wide or within the context of classifying species into guilds from which metrics can be developed for ecological assessment purposes. This paper examines the approach used by the EU project FAME to classify European fish species into consistent ecological guilds and to identify suitable metrics as basic tools for the development of a standardised ecological assessment method for European rivers to meet the requirements of the Water Framework Directive. [source]


    Contribution of native and non-native species to fish communities in French reservoirs

    FISHERIES MANAGEMENT & ECOLOGY, Issue 3-4 2004
    P. Irz
    Abstract Previous studies showed that only 20% of the variability in fish community structure in French reservoirs could be explained by site characteristics. In addition, no relationship was found between the relative abundance of species and stocking effort. Therefore, deliberate or uncontrolled introductions are likely to be the source of a great part of the observed communities. The objective of this study was to assess the importance of species introductions in French reservoirs. Fifty-one reservoirs were sampled to obtain species presence/absence data. Local native (LNaR) and non-native (LNNR) species richness were negatively correlated. LNaR was strongly correlated to the lake surface area, depth and catchment area, whereas LNNR was independent of environmental variables. Furthermore, LNaR was positively correlated to regional native richness. Conversely, local total richness was independent of regional total richness, but was related to the reservoirs' environmental characteristics. It was hypothesised that the native fish communities in French reservoirs are unsaturated and species introductions lead to saturated communities. [source]


    Convergence of fish communities from the littoral zone of reservoirs

    FRESHWATER BIOLOGY, Issue 6 2009
    KEITH B. GIDO
    Summary 1.,Understanding factors that regulate the assembly of communities is a main focus of ecology. Human-engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2.,We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3.,We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4.,The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long-term dynamics of impounded river networks. [source]


    Fish community characteristics of the lower Gambia River floodplains: a study in the last major undisturbed West African river

    FRESHWATER BIOLOGY, Issue 2 2009
    VASILIS LOUCA
    Summary 1.,The Gambia River is the last major West African river that has not been impounded. However, a hydroelectric dam is being constructed and substantial changes to the hydrology and ecology of the system are expected. 2.,Little information is available on the impact of water impoundments in semi-arid regions on downstream floodplain fish communities, due to the scarcity of pre-intervention data. Because profound impacts on physical habitat, salinity and nutrient transport can occur downstream of such impoundments, a knowledge of the species-habitat associations of biota such as fishes is necessary for understanding likely changes and how to limit them. 3.,Fish were sampled using cast and hand nets along two transects on the floodplain, and with fyke nets in two ,bolongs' (creeks) from May to November 2005 and 2006 in the lower reaches of the Gambia River, close to the salt water front where ecological changes due to the construction of the dam are likely to be pronounced. 4.,Greatest fish species richness was associated with low conductivity, low pH and deep water. Bolongs held greater species richness compared with other floodplain habitats, probably because they acted as conduits for fish moving on and off the floodplain. Species richness and catch biomass increased rapidly following the first rains and then declined. 5.,Using a multivariate analysis, three main species groups were identified on the floodplain; one associated with deeper water, one with less brackish water and one with shallow, open water. Tilapia guineensis was the commonest species on the floodplains. 6.,The floodplains provide nursery habitats as many fish captured were immature, particularly for species where adults are mainly encountered in the main channel. Several small-sized floodplain specialists were also represented by a high proportion of mature individuals. 7.,Impoundment is expected to reduce seasonal flooding of the floodplain in the lower Gambia River, downstream of the impoundment, resulting in reduced occurrence of aquatic habitats, especially bolongs, together with lower dissolved oxygen and increased salinity, leading to alteration of the floodplain fish communities, benefiting salt-tolerant species, reducing overall species richness and probably reducing floodplain fish production. [source]


    Behavioural responses of a south-east Australian floodplain fish community to gradual hypoxia

    FRESHWATER BIOLOGY, Issue 3 2007
    DALE G. MCNEIL
    Summary 1. Hypoxic conditions occur frequently during hot, dry summers in the small lentic waterbodies (billabongs) that occur on the floodplains of the Murray-Darling River system of Australia. Behavioural responses to progressive hypoxia were examined for the native and introduced floodplain fish of the Ovens River, an unregulated tributary of the Murray River in south-east Australia. 2. Given the high frequency of hypoxic episodes in billabongs on the Ovens River floodplain, it was hypothesised that all species would exhibit behaviours that would confer a degree of hypoxia-tolerance. Specifically, it was hypothesised that as hypoxia progressed, gill ventilation rates (GVRs) would increase and aquatic surface respiration (ASR) would become increasingly frequent. Fish were subjected to rapid, progressive hypoxia from normoxia to anoxia in open tanks. 3. All tested species exhibited behaviours consistent with their use of potentially hypoxic habitats. As hypoxia progressed, GVRs increased and all species, with the exception of oriental weatherloach, began to switch increasingly to ASR with 90% of individuals using ASR at various oxygen concentrations below 1.0 mg O2 L,1. Australian smelt, redfin perch and flat-headed galaxias were the first three species to rise to ASR, with 10% of individuals using ASR by 2.55, 2.29 and 2.21 mg O2 L,1 respectively. Goldfish and common carp were the last two species to rise to ASR, with 10% of individuals using ASR by 0.84 and 0.75 mg O2 L,1 respectively. In contrast to other species, oriental weatherloach largely ceased gill ventilation and used air-gulping as their primary means of respiration during severe hypoxia and anoxia. 4. Australian smelt, redfin perch and flat-headed galaxias were unable to maintain ASR under severe hypoxia, and began exhibiting erratic movements, termed terminal avoidance behaviour, and loss of equilibrium. All other species continued to use ASR through severe hypoxia and into anoxia. Following a rise to ASR, GVRs either remained steady or decreased slightly indicating partial or significant relief from hypoxic stress for these hypoxia-tolerant species. 5. Behavioural responses to progressive hypoxia amongst the fish species of the Ovens River floodplain indicate a generally high level of tolerance to periodic hypoxia. However, species-specific variation in hypoxia-tolerance may have implications for community structure of billabong fish communities following hypoxic events. [source]


    Influence of stream geomorphic condition on fish communities in Vermont, U.S.A.

    FRESHWATER BIOLOGY, Issue 10 2006
    EIKA P. SULLIVAN, S. MA
    Summary 1. Evaluations of stream geomorphic condition may increase our understanding of the composite effects of human-induced habitat change on fish communities. Using systematic sampling of 44 reaches spread across 26 rivers in Vermont from 2002 through 2004, we tested the hypothesis that stream reaches in reference geomorphic condition would support fish assemblages that differed in diversity and productivity from fish communities found in reaches of poorer geomorphic condition. 2. At each study reach, we sampled the fish community, identified the morphological unit according to common stream classification systems and then evaluated the extent of deviation from reference geomorphic condition using a regionally adapted geomorphic assessment methodology. 3. We used principal component analysis (PCA) and linear regression to build exploratory models linking stream geomorphic condition to fish community characteristics. 4. Our results suggest that geomorphic condition significantly influences fish community diversity, productivity and condition. Geomorphic condition was a significant factor in all of our fish community models. In conjunction with additional reach characteristics, geomorphic condition explained up to 31% of the total variance observed in models for species diversity of fish communities, 44% of the variance in assemblage biomass and 45% of the variance in a regional index of biotic integrity. 5. Our work builds on single-species evidence that geomorphic characteristics represent important local-scale fish-habitat variables, showing that stream geomorphic condition is a dominant factor affecting entire fish communities. Our results enhance our understanding of the hierarchy of factors that influences fish community diversity and organisation and support the use of geomorphic condition assessments in stream management. [source]


    Effects of stream restoration and wastewater treatment plant effluent on fish communities in urban streams

    FRESHWATER BIOLOGY, Issue 10 2006
    ROBERT M. NORTHINGTON
    Summary 1. Fish community characteristics, resource availability and resource use were assessed in three headwater urban streams in Piedmont North Carolina, U.S.A. Three site types were examined on each stream; two urban (restored and unrestored) and a forested site downstream of urbanisation, which was impacted by effluent from a wastewater treatment plant (WWTP). Stream basal resources, aquatic macroinvertebrates, terrestrial macroinvertebrates and fish were collected at each site. 2. The WWTPs affected isotope signatures in the biota. Basal resource, aquatic macroinvertebrate and fish ,15N showed significant enrichments in the downstream sites, although ,13C signatures were not greatly influenced by the WWTP. Fish were clearly deriving a significant part of their nutrition from sewage effluent-derived sources. There was a trend towards lower richness and abundance of fish at sewage-influenced sites compared with urban restored sites, although the difference was not significant. 3. Restored stream sites had significantly higher fish richness and a trend towards greater abundance compared with unrestored sites. Although significant differences did not exist between urban restored and unrestored areas for aquatic and terrestrial macroinvertebrate abundances and biotic indices of stream health, there appeared to be a trend towards improvements in restored sites for these parameters. Additional surveys of these sites on a regular basis, along with maintenance of restored features are vital to understanding and maximising restoration effectiveness. 4. A pattern of enriched ,13C in fish in restored and unrestored streams in conjunction with enriched ,13C of terrestrial invertebrates at these sites suggests that these terrestrial subsidies are important to the fish, a conclusion also supported by isotope cross plots. Furthermore, enriched ,13C observed for terrestrial invertebrates is consistent with some utilisation of the invasive C4 plants that occur in the urban riparian areas. [source]


    Carp (Cyprinus carpio) as a powerful invader in Australian waterways

    FRESHWATER BIOLOGY, Issue 7 2004
    John D. Koehn
    Summary 1. The invasion of carp (Cyprinus carpio L.) in Australia illustrates how quickly an introduced fish species can spread and dominate fish communities. This species has become the most abundant large freshwater fish in south-east Australia, now distributed over more than 1 million km2. 2. Carp exhibit most of the traits predicted for a successful invasive fish species. In addition, degradation of aquatic environments in south-east Australia has given them a relative advantage over native species. 3. Derivation of relative measures of 13 species-specific attributes allowed a quantitative comparison between carp and abundant native fish species across five major Australian drainage divisions. In four of six geographical regions analysed, carp differed clearly from native species in their behaviour, resource use and population dynamics. 4. Climate matching was used to predict future range expansion of carp in Australia. All Australian surface waters appear to be climatically suitable for carp. 5. This assessment strongly reinforces the need for immediate management of carp in Australia to include targeted control of human-assisted dispersal, such as use of carp as bait by anglers, distribution to new locations by anglers and the use of the ,Koi' strain in the aquarium industry. 6. Given their historical spread, dispersal mechanisms and ecological requirements, the expansion of carp across most of the remainder of Australia is to be expected. [source]


    Exploitation and habitat degradation as agents of change within coral reef fish communities

    GLOBAL CHANGE BIOLOGY, Issue 12 2008
    S. K. WILSON
    Abstract Over-exploitation and habitat degradation are the two major drivers of global environmental change and are responsible for local extinctions and declining ecosystem services. Here we compare the top-down effect of exploitation by fishing with the bottom-up influence of habitat loss on fish communities in the most diverse of ecological systems, coral reefs. Using a combination of multivariate techniques and path analyses, we illustrate that the relative importance of coral cover and fishing in controlling fish abundance on remote Fijian reefs varies between species and functional groups. A decline in branching Acropora coral is strongly associated with a decline in abundance of coral-feeding species, and a decrease in coral-associated habitat complexity, which has indirectly contributed to reduced abundance of small-bodied damselfish. In contrast, reduced fishing pressure, brought about by declining human populations and a shift to alternate livelihoods, is associated with increased abundance of some piscivores and fisheries target species. However, availability of prey is controlled by coral-associated habitat complexity and appears to be a more important driver of total piscivore abundance compared with fishing pressure. Effects of both fishing and coral loss are stronger on individual species than functional groups, as variation in the relative importance of fishing or coral loss among species within the same functional group attenuated the impact of either of these potential drivers at the functional level. Overall, fishing continues to have an influence on Fijian fish communities; however, habitat loss is currently the overriding agent of change. The importance of coral loss mediated by climate change is expected to have an increasing contribution to fish community dynamics, particularly in remote locations or where the influence of fishing is waning. [source]


    Will northern fish populations be in hot water because of climate change?

    GLOBAL CHANGE BIOLOGY, Issue 10 2007
    SAPNA SHARMA
    Abstract Predicted increases in water temperature in response to climate change will have large implications for aquatic ecosystems, such as altering thermal habitat and potential range expansion of fish species. Warmwater fish species, such as smallmouth bass, Micropterus dolomieu, may have access to additional favourable thermal habitat under increased surface-water temperatures, thereby shifting the northern limit of the distribution of the species further north in Canada and potentially negatively impacting native fish communities. We assembled a database of summer surface-water temperatures for over 13 000 lakes across Canada. The database consists of lakes with a variety of physical, chemical and biological properties. We used general linear models to develop a nation-wide maximum lake surface-water temperature model. The model was extended to predict surface-water temperatures suitable to smallmouth bass and under climate-change scenarios. Air temperature, latitude, longitude and sampling time were good predictors of present-day maximum surface-water temperature. We predicted lake surface-water temperatures for July 2100 using three climate-change scenarios. Water temperatures were predicted to increase by as much as 18 °C by 2100, with the greatest increase in northern Canada. Lakes with maximum surface-water temperatures suitable for smallmouth bass populations were spatially identified. Under several climate-change scenarios, we were able to identify lakes that will contain suitable thermal habitat and, therefore, are vulnerable to invasion by smallmouth bass in 2100. This included lakes in the Arctic that were predicted to have suitable thermal habitat by 2100. [source]


    Fish community comparisons along environmental gradients in lakes of France and north-east USA

    GLOBAL ECOLOGY, Issue 3 2007
    Pascal Irz
    ABSTRACT Aim, To assess whether eight traits of fish communities (species richness, three reproductive traits and four trophic traits) respond similarly to environmental gradients, and consequently display convergence between the lakes of France and north-east USA (NEUSA). Location, 75 French and 168 north-east USA lakes. Methods, The data encompass fish surveys, the assignment of species into reproductive and trophic guilds, and environmental variables characterizing the lakes and their catchments. The analytical procedure was adapted from the recommendations of Schluter (1986) [Ecology, 67, 1073,1085]. Results, The comparison of the regional pools of lacustrine fishes indicated that NEUSA was about twice as speciose as France, mostly due to higher species turnover across lakes, although NEUSA lakes were consistently about 20% more speciose than French lakes for a given surface area. Warmer environments were consistently inhabited by a higher proportion of phytophilous and guarder species than were colder lakes. Hence there was convergence in community reproductive traits. Conversely, there was no evidence of convergence in the trophic structure of lacustrine fish communities between regions. Main conclusions, The influence of temperature on the availability and quality of spawning substrates appears to be a major constraint on present-day lacustrine fish communities. In parallel, phylogenetic constraints, past events such as the diversification of the North American fish fauna, and selective extinctions during Pleistocene glaciations and subsequent recolonizations contribute to explaining the dissimilarities between the communities of the two regions and differences in their relationship to the environment. [source]


    Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages

    JOURNAL OF APPLIED ECOLOGY, Issue 1 2006
    D. PONT
    Summary 1The need for sensitive biological measures of aquatic ecosystem integrity applicable at large spatial scales has been highlighted by the implementation of the European Water Framework Directive. Using fish communities as indicators of habitat quality in rivers, we developed a multi-metric index to test our capacity to (i) correctly model a variety of metrics based on assemblage structure and functions, and (ii) discriminate between the effects of natural vs. human-induced environmental variability at a continental scale. 2Information was collected for 5252 sites distributed among 1843 European rivers. Data included variables on fish assemblage structure, local environmental variables, sampling strategy and a river basin classification based on native fish fauna similarities accounting for regional effects on local assemblage structure. Fifty-eight metrics reflecting different aspects of fish assemblage structure and function were selected from the available literature and tested for their potential to indicate habitat degradation. 3To quantify possible deviation from a ,reference condition' for any given site, we first established and validated statistical models describing metric responses to natural environmental variability in the absence of any significant human disturbance. We considered that the residual distributions of these models described the response range of each metric, whatever the natural environmental variability. After testing the sensitivity of these residuals to a gradient of human disturbance, we finally selected 10 metrics that were combined to obtain a European fish assemblage index. We demonstrated that (i) when considering only minimally disturbed sites the index remains invariant, regardless of environmental variability, and (ii) the index shows a significant negative linear response to a gradient of human disturbance. 4Synthesis and applications. In this reference condition modelling approach, by including a more complete description of environmental variability at both local and regional scales it was possible to develop a novel fish biotic index transferable between catchments at the European scale. The use of functional metrics based on biological attributes of species instead of metrics based on species themselves reduced the index sensitivity to the variability of fish fauna across different biogeographical areas. [source]


    Current issues with fish and fisheries: editor's overview and introduction

    JOURNAL OF APPLIED ECOLOGY, Issue 2 2003
    S. J. Ormerod
    Summary 1.,By any measure, fishes are among the world's most important natural resources. Annual exploitation from wild populations exceeds 90 million tonnes, and fish supply over 15% of global protein needs as part of total annual trade exceeding $US 55 billion. Additionally, with over 25 000 known species, the biodiversity and ecological roles of fishes are being increasingly recognised in aquatic conservation, ecosystem management, restoration and aquatic environmental regulation. 2.,At the same time, substantial management problems now affect the production, exploitable stocks, global diversity, trophic structure, habitat quality and local composition of fish communities. 3.,In marine systems, key issues include the direct effects of exploitation on fish, habitats and other organisms, while habitat or water quality problems arise also from the atmospheric, terrestrial and coastal environments to which marine systems are linked. In freshwaters, flow regulation and obstruction by dams, fragmentation, catchment management, pollution, habitat alterations, exotic fish introductions and nursery-reared fish are widespread issues. 4.,Management responses to the problems of fish and fisheries include aquatic reserves in both marine and freshwater habitats, and their effectiveness is now being evaluated. Policies on marine exploitation increasingly emphasise fishes as integral components of aquatic ecosystems rather than individually exploitable stocks, but the rationalisation of fishing pressures presents many challenges. In Europe, North America and elsewhere, policies on freshwaters encourage habitat protection, integrated watershed management and restoration, but pressures on water resources will cause continued change. All these management approaches require development and evaluation, and will benefit from a perspective of ecological understanding with ecologists fully involved. 5.,Synthesis and applications. Although making a small contribution to the Journal of Applied Ecology in the past, leading work on aquatic problems and fish-related themes appear increasingly in this and other mainstream ecology journals. As this special profile of five papers shows, significant contributions arise on diverse issues that here include the benefit of aquatic reserves, river restoration for fish, the accumulation of contaminants, interactions with predators, and the fitness of salmonids from nurseries. This overview outlines the current context in which papers on the applied ecology of fish and fisheries are emerging, and it identifies scope for further contributions. [source]


    Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2002
    J. K. Pinnegar
    Summary 1The intensive exploitation of fish communities often leads to substantial reductions in the abundance of target species, with ramifications for the structure and stability of the ecosystem as a whole. 2We explored changes in the mean trophic level of the Celtic Sea (ICES divisions VII f,j) fish community using commercial landings, survey data and estimates of trophic level derived from the analysis of nitrogen stable isotopes. 3Our analyses showed that there has been a significant decline in the mean trophic level of survey catches from 1982 to 2000 and a decline in the trophic level of landings from 1946 to 1998. 4The decline in mean trophic level through time resulted from a reduction in the abundance of large piscivorous fishes and an increase in smaller pelagic species which feed at a lower trophic level. 5Similar patterns of decline in the trophic level of both catches and landings imply that there have been substantial changes in the underlying structure of the Celtic Sea fish community and not simply a change in fishery preferences. 6We suggest that the reported changes in trophic structure result from reductions in the spawning stock biomass of traditional target species associated with intensive fishing, together with long-term climate variability. 7The relative distribution of fish market prices has changed significantly over the past 22 years, with high trophic level species experiencing greater price rises than lower trophic level species. 8Although decreased abundance of high trophic level species will ultimately have negative economic consequences, the reduction in mean trophic level of the fish community as a whole may allow the system to sustain higher fishery yields. 9Management objectives in this fishery will depend on the relative values that society attaches to economic profit and protein production. [source]


    Variation in large-bodied fish-community structure and abundance in relation to water-management regime in a large regulated river

    JOURNAL OF FISH BIOLOGY, Issue 10 2009
    T. J. Haxton
    Variation in life-history traits (growth, condition, mortality and recruitment) and relative abundance of 11 large-bodied fish species was investigated among three water-management regimes (unimpounded, run-of-the-river and winter reservoirs) in the large regulated Ottawa River, Canada. If waterpower management had an effect on fishes, then (1) would be expected community structuring among water-management regimes and (2) species with similar life-history traits should be affected in a similar manner. Large-bodied fish communities were assessed using two different standard index-netting techniques, one using trap nets and the other gillnets. Community structure could be discriminated based on species caught in nets using holographic neural networks (78·8% correct overall classification rate using trap nets and 76·0% using gillnets); therefore, water-management regimes affected community structure in the Ottawa River. Littoral zone benthivores were significantly lower in abundance (P < 0·001) or absent in winter reservoirs, whereas the abundance of planktivores or species that were planktivorous at young ages were significantly greater than in unimpounded river reaches. Growth, condition and mortality did not vary among reach types except smallmouth bass Micropterus dolomieu were in better condition in winter reservoirs than unimpounded reaches. Lake sturgeon Acipenser fulvescens recruitment was impaired in run-of-the-river reaches, whereas recruitment for other species that spawn in fast water was not affected. [source]


    Food-dependent individual growth and population dynamics in fishes,

    JOURNAL OF FISH BIOLOGY, Issue 2006
    L. Persson
    It is long since well established that growth and development in fish individuals are heavily dependent on food intake. Yet, this dependence of individual development on food levels has only to a limited extent been taken into consideration when studying fish population and community processes. Using the modelling framework of physiologically structured population models and empirical data for a number of species configurations, how different size-dependent processes may affect fish population dynamics and community structures are reviewed. Considering competitive interactions, cohort interactions will often give rise to cohort cycles driven by an inequality in competitive abilities between differently sized individuals. The addition of cannibalism may dampen these cycles, the extent to which is dependent on life-history characteristics of the cannibals. The circumstance that individuals change their trophic position over their life cycle as a result of an increase in size gives rise to life history omnivory. In such omnivorous systems, food-dependent growth demotes the potential for predatory and prey fishes to coexist. In tritrophic food chains, food-dependent growth in the intermediate consumer may lead to the presence of bistability including sensitivity to catastrophic behaviour. These results shed new light on the drastic decreases observed in the stocks of many marine fish top predators including their inability to recover after fishing moratoria, and on the suggested presence of alternative states in freshwater fish communities. [source]


    Spatial patterns of the biological traits of freshwater fish communities in south-west France

    JOURNAL OF FISH BIOLOGY, Issue 2 2005
    F. Santoul
    Spatial patterns in the combinations of biological traits of fish communities were studied in the Garonne River system (57 000 km2, south-west France). Fish species assemblages were recorded at 554 sampling sites, and the biological traits of species were described using a fuzzy-coding method. A co-inertia analysis of species distributions and biological traits identified some spatial patterns of species trait combinations. Fish species richness progressively increased from up- to downstream sections, and the longitudinal patterns of fish assemblages partitioned the river into clear biogeographic areas, such as the brown trout Salmo trutta(headwater streams), the grayling Thymallus thymallus, the barbel Barbus barbus and the bream Abramis brama zones (most downstream sections), which fitted with Huet's well-known zonation for western European rivers. Only a few biological traits, chiefly related to life-history attributes, significantly influenced the observed fish distributions. Fecundity, potential size, maximum age and reproductive factor increased from headwater to plain reaches. As a theoretical framework for assessing and predicting the functional organization of stream fish communities, spatial variations in species traits can be related to habitat conditions, thus providing explicit spatial schemes that may be useful to the design of both scientific studies and river management. [source]


    Comparison between two sampling methods to evaluate the structure of fish communities in the littoral zone of a Laurentian lake

    JOURNAL OF FISH BIOLOGY, Issue 5 2004
    A. Brind'Amour
    The results of beach seining were compared with visual surveys, in habitats showing a gradient of macrophyte densities in Lake Drouin, Québec, Canada. Six community descriptors (species density, total fish density, relative abundance per species, presence or absence of given species, size structure of the fish community and total biomass of the fish community) were used to compare the sampling methods. Most of the fish community descriptors obtained by visual surveys were estimated with an accuracy similar to that of beach seining. Both methods sampled the same number of species (eight out of nine). Visual surveys assessed the relative abundance of the yellow perch Perca flavescens and white sucker Catostomus commersoni with an higher accuracy than the beach seine. The greatest discrepancies between the two sampling methods were for total fish density and the total fish biomass. Because of the sampling strategy, both descriptors were underestimated by visual surveys, notably in the higher macrophyte density. In a broad community survey to determine the relative importance of species abundance, the visual survey was effective and could be used to develop a within-lake regular and fine-scale sampling design of the spatial arrangement of fish communities and their habitats. [source]


    DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada

    MOLECULAR ECOLOGY, Issue 13 2010
    SEAN A. LOCKE
    Abstract Diplostomoid metacercariae parasitize freshwater fishes worldwide and cannot be identified to species based on morphology. In this study, sequences of the barcode region of cytochrome c oxidase subunit 1 (CO1) were used to discriminate species in 1088 diplostomoids, most of which were metacercariae from fish collected in the St. Lawrence River, Canada. Forty-seven diplostomoid species were detected, representing a large increase in known diversity. Most species suggested by CO1 sequences were supported by sequences of internal transcribed spacer (ITS) of rDNA and host and tissue specificity. Three lines of evidence indicate that physiological incompatibility between host and parasite is a more important determinant of host specificity than ecological separation of hosts and parasites in this important group of freshwater fish pathogens. First, nearly all diplostomoid species residing outside the lens of the eyes of fish are highly host specific, while all species that occur inside the lens are generalists. This can be plausibly explained by a physiological mechanism, namely the lack of an effective immune response in the lens. Second, the distribution of diplostomoid species among fish taxa reflected the phylogenetic relationships of host species rather than their ecological similarities. Third, the same patterns of host specificity were observed in separate, ecologically distinctive fish communities. [source]


    Intraspecific competition drives multiple species resource polymorphism in fish communities

    OIKOS, Issue 1 2008
    Richard Svanbäck
    It has been hypothesized that inter-specific competition will reduce species niche utilization and drive morphological evolution in character displacement. In the absence of a competitor, intra-specific competition may favor an expansion of the species niche and drive morphological evolution in character release. Despite of this theoretical framework, we sometimes find potential competitor species using the same niche range without any partitioning in niche. We used a database on test fishing in Sweden to evaluate the factors (inter- and intraspecific competition, predation, and abiotic factors) that could influence habitat choice of two competitor species. The pattern from the database shows that the occurrence of perch and roach occupying both littoral and pelagic habitats of lakes in Sweden is a general phenomenon. Furthermore, the results from the database suggest that this pattern is due to intra-specific competition rather than inter-specific competition or predation. In a field study, we estimated the morphological variation in perch and roach and found that, individuals of both species caught in the littoral zone were more deeper bodied compared to individuals caught in the pelagic zone. Pelagic perch fed more on zooplankton compared to littoral perch, independent of size, whereas the littoral perch had more macroinvertebrates and fish in their diet. Pelagic roach fed more on zooplankton compared to littoral roach, whereas littoral individuals fed more on plant material. Furthermore, we sampled littoral and pelagic fish from another lake to evaluate the generality of our first results and found the same habitat associated morphology in both perch and roach. The results show a consistent multi-species morphological separation in the littoral and pelagic habitats. This study suggests that intra-specific competition is possibly more important than inter-specific competition for the morphological pattern in the perch-roach system. [source]


    A trial of two trouts: comparing the impacts of rainbow and brown trout on a native galaxiid

    ANIMAL CONSERVATION, Issue 4 2010
    K. A. Young
    Abstract Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chiloé in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chiloé and elsewhere. [source]


    The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010
    Aaron P. Jenkins
    Abstract 1.Tropical, high islands of the Pacific have developed unique freshwater fish faunas that are currently threatened by a range of human activities. This paper documents distinct differences in life history strategies from fish communities found in streams of Fiji compared with fish assemblages in freshwater systems on larger continental land masses. While river systems of northern Australia and Papua New Guinea have a high proportion of freshwater residents, the Fiji fauna is dominated by amphidromous gobiids that migrate across a broad range of habitats throughout their life cycle. 2.The number of amphidromous fish species and the number of all fish species in mid-reaches of Fiji rivers are significantly affected by loss of catchment forest cover and introductions of tilapia (Oreochromis spp.). On average, stream networks with established Oreochromis spp. populations have 11 fewer species of native fish than do intact systems. The fish that disappear are mostly eleotrid and gobiid taxa, which have important dietary and economic value. 3.Based on the strong links between catchment land clearing, non-native species introductions and loss of migratory pathways for freshwater fish, spatial information was compiled on a national scale to identify priority areas for conservation in Fiji with intact connectivity between forests, hydrologic networks and coral reefs. Areas with high connectivity included remote, largely undeveloped regions of Vanua Levu (Kubulau, Wainunu, Dama, Udu Point, Natewa, Qelewara) and Taveuni, as well as smaller mapping units (Naikorokoro, Sawakasa) of Viti Levu with low density of roads and high relative amounts of mangroves and reefs. 4.These priority areas for conservation can only be effectively protected and managed through cross-sectoral collaboration and ecosystem-based approaches. Copyright © 2009 John Wiley & Sons, Ltd. [source]