Home About us Contact | |||
First-order Elimination (first-order + elimination)
Selected AbstractsToxicokinetics of perfluorocarboxylate isomers in rainbow troutENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2009Amila O. De Silva Abstract Perfluorooctanoate (PFOA) and other perfluorocarboxylates (PFCAs) are widely dispersed in the environment. Current and/or historical production of PFOA and fluorochemical precursors was conducted by telomerization and electrochemical fluorination (ECF). Telomer products typically contain linear chains of perfluorocarbons, and ECF products are a mixture of linear and branched isomers. The objective of the present study was to examine the role of toxicokinetics on PFCA isomer profiles in fish since monitoring studies have revealed a predominance of n -isomers of PFCAs in biota. Using dietary exposure, rainbow trout were administered technical ECF PFOA isomers (6.9 ,g/kg/d), linear perfluorononanoate (1.4 ,g/kg/d n -PFNA), and isopropyl PFNA (1.1 ,g/kg/d iso -PFNA) for 36 d and then switched to a 40-d clean diet. Throughout exposure and depuration phases, blood and tissue sampling ensued. The accumulation ratio (AR) revealed similar accumulation propensity of n -PFOA and two minor branched PFOA isomers; however, the majority of branched isomers had lower AR values than n -PFOA. Enrichment of n -PFOA and n -PFNA relative to most branched isomers was consistent in all tissues. First-order elimination (kd) and half-life (t1/2) values were calculated. The largest t1/2 corresponded to n -PFNA followed by iso -PFNA. In ECF PFOA isomers, both n -PFOA and one minor branched isomer had the largest t1/2, suggesting that this minor isomer could be diagnostic of ECF exposure using environmental PFOA isomer patterns. Results of lower-dose ECF PFOA exposure showed similar results to the high-dose study; it is possible that both scenarios resulted in saturation of processes involved in PFCA transport. As such, the toxicokinetics of PFCA isomers at environmentally realistic levels may deviate from the results of the present study. [source] Comparative studies on the pyrolysis of N -arylideneaminoamides: Kinetic and mechanistic studiesINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 2 2007Nouria A. Al-Awadi Rates of thermal decomposition of title compounds have been measured using a static reaction system. They undergo a unimolecular first-order elimination to give arylnitrile and the corresponding substituted amides. The decomposition parallels that of N -arylidenamino cyclic amide. The relative elimination rates at 600 K were calculated. The kinetic data reveal that the electronic effects of substituents, such as methyl, phenyl, benzyl, and allyl groups, are associated with the opposing directions in which the lone pair of electrons on the nitrogen atom of the arylidene moiety is being delocalized. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 59,66, 2007 [source] Population pharmacokinetics of cefepime in neonates with severe nosocomial infectionsJOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 3 2008V. Lima-Rogel MD Summary Objective:, To define the pharmacokinetic behaviour of cefepime in neonates with severe nosocomial infections using a mixed effects model. Patients and methods:, Thirty-one newborn infants were included in the study; 10 additional infants participated in the validation of the pharmacokinetic model. Cefepime CL and V were determined using an open monocompartmental model with first-order elimination. The influence of demographic and clinical characteristics on the model was evaluated. The non-linear mixed effect model (nonmem) program was used to determine the pharmacokinetic population model. Results:, The mean corrected gestational age for infants participating in the construction and validation of the model were 35 and 33 weeks, respectively. Factors included in the final pharmacokinetic model were body surface area (BSA) and calculated CLCR. The final population model was CL (L/h) = 0·457 BSA (m2) + 0·243 CLCR (L/h) and V(L) = 4·12 BSA (m2). This model explains 33·3% of the interindividual variability for CL and 12·8% for V. This model was validated in ten neonates with nosocomial infections by assessing the predictive capacity of plasma cefepime concentrations using a priori and Bayesian strategies. Conclusions:, The predictive performance of this population model for cefepime plasma concentrations was adequate for clinical purposes and can be used for individualizing cefepime therapy in newborn infants with severe infections. Cefepime plasma concentrations can be predicted based on BSA and calculated CLCR. Cefepime therapy using a 250 mg/m2 dose administered every 12 h is adequate to achieve plasma concentrations greater than 8 ,g/mL during more than 60% of the dosing interval and is expected to be effective in the treatment of bloodstream infections caused by most gram negative organisms in newborn infants. A dose of 550 mg/m2 would be required for the treatment of infections caused by Pseudomonas sp. [source] Pharmacokinetics of sertindole and its metabolite dehydrosertindole in rats and characterization of their comparative pharmacodynamics based on in vivo D2 receptor occupancy and behavioural conditioned avoidance responseBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2009Christoffer Bundgaard Abstract The objectives of this study were to characterize the pharmacokinetics of sertindole and its active metabolite dehydrosertindole in rats and to evaluate the central modulatory and behavioural pharmacodynamics including a competitive interaction model between the compounds. Following oral administration of sertindole or dehydrosertindole, the plasma concentration,time courses were determined in conjunction with striatal dopamine D2 receptor binding. In addition, the behavioural effects were recorded in the conditioned avoidance response (CAR) paradigm. A one-compartment model with Michaelis-Menten elimination best described the pharmacokinetics of sertindole. Formation of dehydrosertindole was incorporated into the pharmacokinetic model and exhibited first-order elimination. PK/PD modelling after administration of dehydrosertindole resulted in potency estimates of 165 and 424,ng/ml for D2 -occupancy (Kd) and CAR measurements (EC50), respectively. The pharmacokinetics of the parent,metabolite system was integrated into a competitive pharmacodynamic Emax model in order to quantitate the potency of sertindole with the pharmacodynamic parameters of the metabolite taken into account. Based on this approach, effect compartment concentrations of sertindole needed to attain 50% occupancy and half-maximal effect in the CAR paradigm were 133 and 338,ng/ml, respectively. The corresponding potency-estimates obtained after conventional modelling of the sertindole data without accounting for the metabolite amounted to 102 and 345,ng/ml. Based on competitive PK/PD analysis of the parent,metabolite interaction, the relative contribution of dehydrosertindole to the overall pharmacological effect after sertindole administration in rats appeared to be of minor significance. This could mainly be ascribed to the relatively low extent of bioconversion of sertindole into dehydrosertindole in this species. Copyright © 2009 John Wiley & Sons, Ltd. [source] Population pharmacokinetics of darbepoetin alfa in healthy subjectsBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 1 2007Balaji Agoram Aim To develop and evaluate a population pharmacokinetic (PK) model of the long-acting erythropoiesis-stimulating protein, darbepoetin alfa in healthy subjects. Methods PK profiles were obtained from 140 healthy subjects receiving single intravenous and/or single or multiple subcutaneous doses of darbepoetin alfa (0.75,8.0 µg kg,1, or either 80 or 500 µg). Data were analysed by a nonlinear mixed-effects modelling approach using NONMEM software. Influential covariates were identified by covariate analysis emphasizing parameter estimates and their confidence intervals, rather than stepwise hypothesis testing. The model was evaluated by comparing simulated profiles (obtained using the covariate model) to the observed profiles in a test dataset. Results The population PK model, including first-order absorption, two-compartment disposition and first-order elimination, provided a good description of data. Modelling indicated that for a 70-kg human, the observed nearly twofold disproportionate dose,exposure relationship at the 8.0 µg kg,1 -dose relative to the 0.75 µg kg,1 -dose may reflect changing relative bioavailability, which increased from ,,48% at 0.75 µg kg,1 to 78% at 8.0 µg kg,1. The covariate analysis showed that increasing body weight may be related to increasing clearance and central compartment volume, and that the absorption rate constant decreased with increasing age. The full covariate model performed adequately in a fixed-effects prediction test against an external dataset. Conclusion The developed population PK model describes the inter- and intraindividual variability in darbepoetin alfa PK. The model is a suitable tool for predicting the PK response of darbepoetin alfa using clinically untested dosing regimens. [source] Limited predictability of amikacin clearance in extreme premature neonates at birthBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 1 2006Karel Allegaert Aim Identify and quantify factors describing variability of amikacin clearance in preterm neonates at birth. Methods Population pharmacokinetics of amikacin were estimated in a cohort of 205 extreme preterm neonates [post conception age (PCA) 27.8, SD 1.8, range 24,30 weeks; weight 1.07, SD 0.34, range 0.45,1.98 kg, postnatal age <,72 h]. Covariate analysis included weight, PCA, Apgar score, prophylactic administration of a nonsteroidal anti-inflammatory drug (NSAID) to the neonate, maternal indomethacin and betamethasone administration, and chorioamnionitis. Results A one-compartment linear disposition model with zero order input (0.3 h i.v. infusion) and first-order elimination was used. The population parameter estimate for volume of distribution (V) was 40.2 l per 70 kg. Clearance (CL) increased from 0.486 l h,1 per 70 kg at 24 weeks PCA to 0.940 l h,1 per 70 kg by 30 weeks PCA. The population parameter variability (PPV) for CL and V was 0.336 and 0.451. The use of a NSAID (either aspirin or ibuprofen) in the first day of life reduced amikacin clearance by 22%. Overall 65% of the variability of CL was predictable. Weight explained 48%, PCA 15% and NSAIDs 2%. Conclusions Size and post-conception age are the major contributors to clearance variability in extreme premature neonates (<31 weeks PCA). The large (35% of total) unexplained variability in clearance reinforces the need for target concentration intervention to reduce variability in exposure to a safe and effective range. [source] Pharmacokinetics and pharmacodynamics of TF-505, a novel nonsteroidal 5,-reductase inhibitor, in normal subjects treated with single or multiple dosesBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 3 2002Tomoe Fujita Aims To assess the tolerability, pharmacokinetics and pharmacodynamics of a novel nonsteroidal,, and,, noncompetitive,, inhibitor,, of,, type,, I,, and,, type,, II,, 5,-reductases, (,)-(S)-4-[1-[4-[1-(4-isobutylphenyl) butoxy]benzoyl]indolizin-3-yl]butyric acid (TF-505), after single and multiple oral doses in healthy volunteers. Methods In the single-dose study, six young adult males in each dose group received 25 mg or 50 mg of TF-505, and six older males (, 40 years) in each dose group received 75 mg or 100 mg of TF-505. The subjects were given the drug in ascending dose and in the fasting state. Six subjects also received 50 mg of TF-505 after breakfast in a two-period crossover manner. In the multiple-dose study, six older males in each dose group received 12.5 mg or 25 mg TF-505 after breakfast daily for 7 days. Plasma concentrations of TF-505, dihydrotestosterone (DHT) and testosterone were measured. The pharmacokinetics of TF-505 were analysed by a compartment model with first-order absorption, first-order elimination and a lag time. Pharmacokinetic and pharmacodynamic relationships were evaluated by indirect response modelling with inhibition of input. Results Maximum plasma concentration (Cmax) and the area under the concentration,time curve (AUC) increased proportionately after the single dose up to 50 mg and with the multiple doses. Linearity was not detected between 75 and 100 mg of TF-505. Dose dependency was also noted for the effect of TF-505 on DHT concentrations following single doses up to 50 mg and multiple doses. Plasma DHT concentrations decreased maximally to 58.2, 49.5, 54.2 and 49.8% of basal values at 8,12 h after single administration of 25, 50, 75 and 100 mg TF-505, respectively, and to 60.5 and 49.4% at the 7th and 5th dose following multiple doses of 12.5 and 25 mg TF-505, respectively. The predicted effect curves matched the observed data when the indirect response model was applied to the time course of the suppressant effect of TF-505 on plasma DHT concentrations after both the single and multiple studies. Fifty percent inhibitory concentrations (IC50) of 0.82, 1.48, 1.31 and 0.88 µ g ml,1, zero-order rate constants for the onset of plasma DHT concentration changes (kin) of 17.8, 17.4, 17.0 and 10.7% h,1 and first-order rate constants,, for,, increase,, in,, plasma,, DHT,, concentrations,, to,, basal,, values,, (kout),, of,, 0.17,,, 0.16,,, 0.17,, and,, 0.10 h,1,, for,, the,, single,, study,, at,, doses,, of,, 25,,, 50,,, 75,, and 100 mg, respectively, were attained. In the multiple-dose study, IC50s were 1.74 and 1.49 µg ml,1 for the 12.5 and 25 mg doses, respectively. No serious adverse events related to TF-505 were observed. Conclusions TF-505 was well tolerated in healthy male volunteers. Accumulation of TF-505 in plasma was not observed during multiple dosing. The indirect response model described the relationships between pharmacokinetics and pharmacodynamics of TF-505. Such modelling is expected to yield an appropriate dosage regimen in subsequent clinical trials. [source] |