First Mutation (first + mutation)

Distribution by Scientific Domains


Selected Abstracts


Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease,

HUMAN MUTATION, Issue 6 2010
Gerassimos E. Voutsinas
Abstract Genetic alterations in the alpha-synuclein (SNCA) gene have been implicated in Parkinson Disease (PD), including point mutations, gene multiplications, and sequence variations within the promoter. Such alterations may be involved in pathology through structural changes or overexpression of the protein leading to protein aggregation, as well as through impaired gene expression. It is, therefore, of importance to specify the parameters that regulate SNCA expression in its normal and mutated state. We studied the expression of SNCA alleles in a lymphoblastoid cell line and in the blood cells of a patient heterozygous for p.Ala53Thr, the first mutation to be implicated in PD pathogenesis. Here, we provide evidence that: (1) SNCA shows monoallelic expression in this patient, (2) epigenetic silencing of the mutated allele involves histone modifications but not DNA methylation, and (3) steady-state mRNA levels deriving from the normal SNCA allele in this patient exceed those of the two normal SNCA alleles combined, in matching, control individuals. An imbalanced SNCA expression in this patient is thus documented, with silencing of the p.Ala53Thr allele and upregulation of the wild-type-allele. This phenomenon is demonstrated for a first time in the SNCA gene, and may have important implications for PD pathogenesis. Hum Mutat 31:1,7, 2010. © 2010 Wiley-Liss, Inc. [source]


Mutation spectrum of human SLC39A4 in a panel of patients with acrodermatitis enteropathica,,

HUMAN MUTATION, Issue 4 2003
Sébastien Küry
Abstract Acrodermatitis enteropathica is rare autosomal recessive disorder characterized by a severe nutritional zinc deficiency. We and others have recently identified the human gene encoding an intestinal zinc transporter of the ZIP family, SLC39A4, as the mutated gene in acrodermatitis enteropathica (AE). A first mutation screening in 8 AE families (15 patients out of 36 individuals) revealed the presence of six different mutations described elsewhere. Based on these results, we have evaluated the involvement of SLC39A4 in 14 patients of 12 additional AE pedigees coming either from France, Tunisia, Austria or Lithuania. A total of 7 SLC39A4 mutations were identified (1 deletion, 2 nonsense, 2 missense, and 2 modifications of splice site), of which 4 are novel: a homozygous nonsense mutation in 3 consanguineous Tunisian families [c.143T>G (p.Leu48X)], a heterozygous nonsense mutation (c.1203G>A (p.Trp401X)) in a compound heterozygote from Austria also exhibiting an already known missense mutation, and distinct homozygous mutations in families from France or Tunisia [c.475-2A>G and c.184T>C (p.Cys62Arg)]. Furthermore, two other potential mutations [c.850G>A (p.Glu284Lys) and c.193-113T>C] were also observed at homozygous state in a French family formerly described. This study brings to 21 the number of reported SLC39A4 mutations in AE families. © 2003 Wiley-Liss, Inc. [source]


Spinocerebellar ataxia 14: Novel mutation in exon 2 of PRKCG in a German family

MOVEMENT DISORDERS, Issue 2 2007
Dagmar Nolte PhD
Abstract We describe a novel mutation in the gene coding for protein kinase C gamma (PRKCG) in patients of a German family affected with slowly progressive gait ataxia, dysarthria, and nystagmus. The G/T missense mutation occurred in exon 2 of PRKCG and results in a substitution of glycine by valine (G63V) in the evolutionarily highly conserved cysteine-rich region 1/C1 domain of PRKCG. Among the 20 mutations described to date, this is the first mutation located in exon 2 of PRKCG. © 2006 Movement Disorder Society [source]


Prenatal diagnosis for arginase deficiency by second-trimester fetal erythrocyte arginase assay and first-trimester ARG1 mutation analysis

PRENATAL DIAGNOSIS, Issue 11 2004
Stanley H. Korman
Abstract Hyperargininemia is a progressive neurometabolic disorder caused by deficiency of hepatic cytosolic arginase I, resulting from mutations in the ARG1 gene. We diagnosed arginase deficiency in a three-year-old male child of first-cousin Palestinian Arab parents. Prenatal diagnosis of an unaffected fetus was achieved in the second trimester of a subsequent pregnancy by cordocentesis and analysis of arginase activity in fetal erythrocytes. ARG1 mutation analysis in the proband revealed homozygosity for a deletion of 10 753 bp extending from the first intron to beyond the poly (A) site of the gene. This is the first gross deletion in the ARG1 gene to be identified and the first mutation to be described in an arginase-deficient patient of this ethnic origin. The identification of the ARG1 deletion in this family enabled first-trimester prenatal diagnosis in a subsequent pregnancy by multiplex PCR analysis performed on chorionic villous DNA. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils

THE JOURNAL OF PHYSIOLOGY, Issue 15 2008
Alexandra Belus
The R403Q mutation in ,-myosin heavy chain was the first mutation to be identified as responsible for familial hypertrophic cardiomyopathy (FHC). In spite of extensive work on the functional sequelae of this mutation, the mechanism by which the mutant protein causes the disease has not been definitely identified. Here we directly compare contraction and relaxation mechanics of single myofibrils from left ventricular samples of one patient carrying the R403Q mutation to those from a healthy control heart. Tension generation and relaxation following sudden increase and decrease in [Ca2+] were much faster in the R403Q myofibrils with relaxation rates being the most affected parameters. The results show that the R403Q mutation leads to an apparent gain of protein function but a greater energetic cost of tension generation. Increased energy cost of tension generation may be central to the FHC disease process, help explain some unresolved clinical observations, and carry significant therapeutic implications. [source]


Epidermolysis bullosa simplex in Japanese and Korean patients: genetic studies in 19 cases

BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2006
K. Yasukawa
Summary Background, Epidermolysis bullosa simplex (EBS) comprises a group of hereditary bullous diseases characterized by intraepidermal blistering caused by mutations in either keratin gene, KRT5 or KRT14. Significant correlation between the position of mutations within these proteins and the clinical severity of EBS has been noted. A recent report showed EBS cases in Israel had unique genetic features compared with European or U.S.A. associated families, which suggests that the ethnic and geographical features of EBS patients may be different. Objectives, To assess the possibility that EBS may present with certain specific features in Japanese and Koreans and to identify additional EBS mutations for genotype/phenotype correlation. Methods, EBS was clinically diagnosed and confirmed by transmission electron microscopic examination of a skin biopsy. Mutation analysis of KRT5 and KRT14 was performed by direct sequencing in 17 Japanese and two Korean EBS patients. Results, We have identified six novel KRT5 missense mutations (V143D, D158V, V186M, Q191P, R352S, G517D). R352S is the first mutation in the 2A domain. Most of these novel mutations changed amino acids that were evolutionarily conserved. Eight including all five mutations in EBS-Dowling,Meara patients have been previously reported. We were unable to detect mutations in five sporadic EBS-Koebner patients. The proportion of mutations in KRT5 (11 of 14; 78%) is higher than that for KRT14 mutations (3 of 14; 21%) in these Japanese and Korean EBS patients. Conclusions, Japanese and Korean patients with EBS showed very similar phenotype and genotype correlations with patients from Western countries. Whether the higher proportion of KRT5 mutations is a definite characteristic of Japanese and Korean patients with EBS or not, requires further research into mutations in Japanese and Korean people. [source]