AlN Buffer Layer (aln + buffer_layer)

Distribution by Scientific Domains


Selected Abstracts


Growth of GaN quantum dots on nonpolar A -plane SiC by molecular-beam epitaxy

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 15 2006
S. Founta
Abstract We report on A -plane GaN quantum dots in AlN, grown on A -plane 6H SiC substrates by plasma-assisted molecular-beam epitaxy. AFM imaging revealed a strong alignment of the dots along the [100] direction that we correlated with the anisotropic morphology of the AlN buffer layer. A vertical correlation of these dots was evidenced by high resolution transmission electron microscopy on superlattice samples with an AlN spacer thickness of 5 nm. Time-resolved spectroscopy performed on both C -plane and A -plane samples revealed much shorter radiative lifetimes for the A -plane dots, indicating a strong reduction of the internal electric field with respect to the one present in their C -plane counterparts. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Structural and optical characterization of (11-22) semipolar GaN on m -plane sapphire without low temperature buffer layer

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7-8 2010
Sung-Nam Lee
Abstract We reported the high quality semipolar (11-22) GaN grown on m-sapphire by using the novel two-step growth method without low temperature GaN or AlN buffer layer. It is found that macroscopic surface morphology of semipolar GaN epilayer was very smooth, while microscopic surface structure was arrowhead-like surface structure toward the direction of [1-21-1]. Anisotropic crystal properties of semipolar GaN/m-sapphire were also observed by two incident directions of X-ray beam. Therefore, we suggested that the anisotropic crystal properties and arrow-head like surface structure would be caused by heteroepitaxial crystallograhpic difference between semipolar GaN and m-sapphire. Additionally, photoluminescence (PL) measurements showed the strong bandedge emission of n-type semipolar GaN without yellow luminescence (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Structural and electrical characterization of a -plane GaN grown on a -plane SiC

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2003
M. D. Craven
Abstract Planar nonpolar () a -plane GaN thin films were grown on () a -plane 6H-SiC substrates via metalorganic chemical vapor deposition by depositing a high temperature AlN buffer layer prior to the epitaxial GaN growth. The orientation of the GaN film and AlN buffer layer directly match that of the SiC substrate, as determined by on- and off-axis X-ray diffraction measurements. The morphological evolution of GaN grown on the AlN buffer layers was investigated using atomic force microscopy. Microstructural characterization of the coalesced a -plane GaN films provided by plan-view transmission electron microscopy revealed threading dislocation and stacking fault densities of ,3 × 1010 cm,2 and ,7 × 105 cm,1, respectively. Structural comparisons to a -plane GaN films grown on r -plane sapphire substrates are presented. Si-doped films were grown with a variety of Si/Ga ratios and electrically characterized using Hall effect measurements. A maximum Hall mobility of 109 cm2/Vs was attained at a carrier concentration of 1.8 × 1019 cm,3. [source]


Strain-engineered novel III,N electronic devices with high quality dielectric/semiconductor interfaces

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2003
M. Asif Khan
Abstract Since the early demonstration of 2D-electron gas [M. A. Khan et al., Appl. Phys. Lett. 60, 3027 (1992)] and a heterojunction field effect transistor (HFET) [M. Asif Khan et al., Appl. Phys. Lett. 63, 1214 (1993)] in III,N materials, rapid progress has been made to improve the DC and RF performance of GaN,AlGaN based HFETs. Stable and impressive microwave powers as high as 4,8 W/mm have been reported for device operation frequencies from 10 to 35 GHz. The key reason for these high performance numbers is an extremely large sheet carrier densities (>1 × 1013 cm,2) that can be induced at the interfaces in III,N hetereojunction [A. Bykhovsk et al., J. Appl. Phys. 74, 6734 (1993); M. Asif Khan et al., Appl. Phys. Lett. 75, 2806 (1999)]. These are instrumental in screening the channel dislocations thereby retaining large room temperature carrier mobilities (>1500 cm2/Vs) and sheet resistance as low as 300 ,/sq. These numbers and the high breakdown voltages of the large bandgap III,N material system thus enable rf-power approximately 5,10 times of that possible with GaAs and other competitor's technologies. We have recently introduced a unique pulsed atomic layer epitaxy approach to deposit AlN buffer layers and AlN/AlGaN superlattices [J. Zhang et al., Appl. Phys. Lett. 79, 925 (2001); J. P. Zhang et al., Appl. Phys. Lett. 80, 3542 (2002)] to manage strain and decrease the dislocation densities in high Al-content III,N layers. This has enabled us to significantly improve GaN/AlGaN hetereojunctions and the device isolation. The resulting low defect layers are not only key to improving the electronic but also deep ultraviolet light-emitting diode devices. For deep UV LED's they enabled us to obtain peak optical powers as high as 10 mW and 3 mW for wavelengths as short as 320 nm and 278 nm. Building on our past work [M. Asif Khan et al., Appl. Phys. Lett. 77, 1339 (2000); X. Hu et al., Appl. Phys. Lett. 79, 2832 (2001)] we have now deposited high quality SiO2/Si3N4 films over AlGaN with low interface state densities. They have then been used to demonstrate III,N insulating gate transistors (MOSHFET (SiO2) and MISHFET (Si3N4) with gate leakage currents 4,6 order less than those for conventional GaN,AlGaN HFETs. The introduction of the thin insulator layers (less then 100 Å) under the gate increases the threshold voltage by 2,3 V. In addition, it reduces the peak transconductance gm. However the unity cut-off frequency, the gain and the rf-powers remain unaffected as the gm/Cgs (gate-source capacitance) ratio remains unchanged. In addition to managing the defects and gate leakage currents we have also employed InGaN channel double heterojunction structures (AlInGaN,InGaN,GaN) to confine the carriers thereby reducing the spillover into trappings states. These InGaN based MOS-DHFETs exhibited no current-collapse, extremely low gate leakage currents (<10,10 A/mm) and 10,26 GHz rf-powers in excess of 6 W/mm. We have also demonstrated the scalability and stable operation of our new and innovative InGaN based insulating gate heterojunction field effect transistor approach. In this paper we will review the III,N heterojunction field-effect transistors progress and pioneering innovations including the excellent work from several research groups around the world. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


n-Al0.75Ga0.25N epilayers for 250 nm emission ultraviolet light emitting diodes

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2005
W. H. Sun
Abstract We have developed a unique approach combining migration-enhanced metalorganic chemical vapor deposition (MEMOCVD) high temperature AlN buffer layers and AlGaN/AlN superlattices (SLs) to yield high quality ( HQ) AlGaN layers for 250 nm LEDs. Symmetric/asymmetric X-ray diffraction (XRD) and room temperature photoluminescence measurements were used to study the high-structural and optical quality. The (002) and (114) rocking curve full width at half,maximum (FWHM) of 1.4 µm n-Al0.75Ga0.25N grown over AlGaN/AlN buffer were 143 and 565 arcsec, respectively. Crack-free Al0.75Ga0.25N layers with electron concentration as high as 1 × 1018 cm,3 and Hall mobility about 50 cm2/V.s were successfully grown and used for sub-milliwatt power (0.12 mW at a pulse pump current of 300 mA) 250 nm deep ultraviolet light emitting diodes (UVLEDs). In addition, for comparison, we prepared n-AlGaN only using high temperature AlN without SLs inserted. The experiments show that the AlGaN/AlN SLs inserted play a crucial role in improving structural and optical quality of high Al-composition AlGaN epilayers. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Structural and electrical characterization of a -plane GaN grown on a -plane SiC

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2003
M. D. Craven
Abstract Planar nonpolar () a -plane GaN thin films were grown on () a -plane 6H-SiC substrates via metalorganic chemical vapor deposition by depositing a high temperature AlN buffer layer prior to the epitaxial GaN growth. The orientation of the GaN film and AlN buffer layer directly match that of the SiC substrate, as determined by on- and off-axis X-ray diffraction measurements. The morphological evolution of GaN grown on the AlN buffer layers was investigated using atomic force microscopy. Microstructural characterization of the coalesced a -plane GaN films provided by plan-view transmission electron microscopy revealed threading dislocation and stacking fault densities of ,3 × 1010 cm,2 and ,7 × 105 cm,1, respectively. Structural comparisons to a -plane GaN films grown on r -plane sapphire substrates are presented. Si-doped films were grown with a variety of Si/Ga ratios and electrically characterized using Hall effect measurements. A maximum Hall mobility of 109 cm2/Vs was attained at a carrier concentration of 1.8 × 1019 cm,3. [source]