Home About us Contact | |||
Alkaloid Biosynthesis (alkaloid + biosynthesis)
Selected AbstractsTerpenoid Indole Alkaloids Biosynthesis and Metabolic Engineering in Catharanthus roseusJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2007Dong-Hui Liu Abstract Catharanthus roseus L. (Madagascar periwinkle) biosynthesizes a diverse array of secondary metabolites including anticancer dimeric alkaloids (vinblastine and vincristine) and antihypertensive alkaloids (ajmalicine and serpentine). The multi-step terpenoid indole alkaloids (TIAs) biosynthetic pathway in C. roseus is complex and is under strict molecular regulation. Many enzymes and genes involved in the TIAs biosynthesis have been studied in recent decades. Moreover, some regulatory proteins were found recently to control the production of TIAs in C. roseus. Based on mastering the rough scheme of the pathway and cloning the related genes, metabolic engineering of TIAs biosynthesis has been studied in C. roseus aiming at increasing the desired secondary metabolites in the past few years. The present article summarizes recent advances in isolation and characterization of TIAs biosynthesis genes and transcriptional regulators involved in the second metabolic control in C. roseus. Metabolic engineering applications in TIAs pathway via overexpression of these genes and regulators in C. roseus are also discussed. [source] Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesisFEBS JOURNAL, Issue 12 2002Emine Mattern-Dogru In the biosynthesis of the antiarrhythmic alkaloid ajmaline, polyneuridine aldehyde esterase (PNAE) catalyses a central reaction by transforming polyneuridine aldehyde into epi-vellosimine, which is the immediate precursor for the synthesis of the ajmalane skeleton. The PNAE cDNA was previously heterologously expressed in E. coli. Sequence alignments indicated that PNAE has a 43% identity to a hydroxynitrile lyase from Hevea brasiliensis, which is a member of the ,/, hydrolase superfamily. The catalytic triad, which is typical for this family, is conserved. By site-directed mutagenesis, the members of the catalytic triad were identified. For further detection of the active residues, a model of PNAE was constructed based on the X-ray crystallographic structure of hydroxynitrile lyase. The potential active site residues were selected on this model, and were mutated in order to better understand the relationship of PNAE with the ,/, hydrolases, and as well its mechanism of action. The results showed that PNAE is a novel member of the ,/, hydrolase enzyme superfamily. [source] Medicinally important secondary metabolites in recombinant microorganisms or plants: Progress in alkaloid biosynthesisBIOTECHNOLOGY JOURNAL, Issue 12 2009Holger Schäfer Abstract Plants produce a high diversity of natural products or secondary metabolites which are important for the communication of plants with other organisms. A prominent function is the protection against herbivores and/or microbial pathogens. Some natural products are also involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary metabolites have interesting biological properties and quite a number are of medicinal importance. Because the production of the valuable natural products, such as the anticancer drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological alternatives to produce these alkaloids more economically become increasingly important. This review provides an overview of the state of art to produce alkaloids in recombinant microorganisms, such as bacteria or yeast. Some progress has been made in metabolic engineering usually employing a single recombinant alkaloid gene. More importantly, for benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some terpenoids and phenolics the proof of concept for production of complex alkaloids in recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, it will probably be possible to generate gene cassettes for complete pathways, which could then be used for production of valuable natural products in bioreactors or for metabolic engineering of crop plants. This will improve their resistance against herbivores and/or microbial pathogens. [source] Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feedingBIOTECHNOLOGY PROGRESS, Issue 5 2009Sheba Goklany Abstract The production of pharmaceutically important terpenoid indole alkaloids (TIAs) from Catharanthus roseus is partly regulated at the transcriptional level. In this study, limitations in TIA biosynthesis from C. roseus hairy root cultures were assessed through gene expression profiling and precursor feeding. The transcript levels of key TIA pathway genes (G10h, Tdc, Str, and Sgd) and metabolite levels associated with the TIA pathway (tryptamine, loganin, secologanin, strictosidine, ajmalicine, serpentine, and tabersonine) were monitored using quantitative RT-PCR and HPLC, respectively. In cultures elicited with methyl jasmonate (250 ,M MeJA on day 21), G10h, Tdc, Str, and Sgd expression increased by 9.1, 3.1, 6.7, and 8.3-fold, respectively, after 24 h. Up-regulation of gene expression was followed by a 160, 440, and 420% increase in strictosidine, ajmalicine, and tabersonine levels, respectively, after 5 days. Precursors loganin, tryptamine, or their combination were fed to noninduced and MeJA-induced cultures to complement the above studies. TIA production was not significantly enhanced in either noninduced or MeJA-induced cultures with precursor feeding. In noninduced cells, steps downstream of loganin and tryptamine were limiting (SLS, STR, or SGD) because either loganin or tryptamine accumulated in the cells with precursor feeding. These bottlenecks were partly overcome in MeJA-induced cultures as the expression of Str and Sgd genes and TIA production increased. However, secologanin accumulated in MeJA-induced cultures with precursor feeding, suggesting that STR was likely limiting under MeJA-induced conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |