Home About us Contact | |||
Alkaline Treatment (alkaline + treatment)
Selected AbstractsSeparation of Escherichia coli 055:B5 lipopolysaccharide and detoxified lipopolysaccharide by high-performance capillary electrophoresisELECTROPHORESIS, Issue 17 2003Nicola Volpi Abstract A rapid, highly sensitive and reproducible high-performance capillary electrophoresis (HPCE) method (electrokinetic chromatography with sodium dodecyl sulfate) is described for the determination of the lipopolysaccharide (LPS) and detoxified LPS (D-LPS), produced by both alkaline treatment in anhydrous conditions and mild acid hydrolysis, from Escherichia coli 055:B5 bacteria. LPS and D-LPS are separated and readily determined within 25 min on an uncoated fused-silica capillary using normal polarity at 20 kV and detection at 200 nm. A linear relationship (correlation coefficient greater than about 0.97) was found for the LPS and the two D-LPS species over a wide range of concentrations, from approximately 120 to 360 ng, with a detection sensitivity less than about 100 ng. Furthermore, HPCE was able to separate several molecular species mainly due to the presence of populations with O -specific polysaccharides of distinct and increasing mean chain lengths. This approach could be of great importance for the quantitative determination of LPS and D-LPS during the purification and preparation processes, also considering the importance of D-LPS in the preparation of human vaccines, and for the qualitative evaluation of the heterogeneity of LPS and the O -polysaccharide components. [source] Tailored Mesoporosity Development in Zeolite Crystals by Partial Detemplation and DesilicationADVANCED FUNCTIONAL MATERIALS, Issue 1 2009Javier Pérez-Ramírez Abstract Partial detemplation of zeolites followed by desilication in alkaline medium is demonstrated as a powerful and elegant approach to design hierarchical zeolites with tailored degree of mesoporosity. This achievement, illustrated for large beta crystals, is based on the fact that the template-containing zeolite is virtually inert to Si leaching upon treatment in aqueous NaOH solutions. Partial removal of the structure-directing agent creates regions in the crystal susceptible to mesopore formation by subsequent desilication, while template-containing regions are protected from silicon extraction. Variation of the calcination temperature in the range 230,550,°C determines the amount of template removed and enables control of the extent of mesopore formation in the zeolite (20,230,m2,g,1) upon alkaline treatment. The functionality of the introduced mesoporosity in the hierarchical beta crystals is demonstrated by the improved performance in the catalytic pyrolysis of low-density polyethylene. The partial detemplation,desilication treatment enhances the tuning options of this demetallation method. [source] Systemic and local effects of long-term exposure to alkaline drinking water in ratsINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2001Marina E.T. Merne Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined. [source] Preparation and pH-sensitivity of polyacrylonitrile (PAN) based porous hollow gel fibersJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Xinyuan Shen Abstract Polyacrylonitrile based porous hollow gel fibers were prepared from PAN hollow fibers by oxidation and subsequent alkaline treatment. Fourier-transform infrared (FTIR), X-ray diffraction, and scanning electron microscope (SEM) analyses showed that the PAN porous hollow gel fiber was a kind of amphoteric fiber due to the combination of cationic groups of pyridyl and anionic groups of carboxyl; after gelation the hollow channel and finger-like pores on the fiber walls were conserved. The effects of cyclization reaction degree, alkaline solution concentration, and alkaline treatment time on the mechanical properties or pH-sensitive behavior of the porous hollow gel fibers were investigated. The elongation/contraction behavior was studied in detail. It was found that the gel fiber exhibited a large swelling in an alkaline solution and contracting in an acid solution; the swelling change in length was above 90%; the responsive time of elongation/contraction was less than 20 s; the maximum contraction force was 20 N/cm2; and pH-sensitivity was reversible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] D -Lactic acid production from waste cardboardJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 1 2005Remedios Yáñez Abstract The effects caused by alkaline treatment on the susceptibility of waste cardboard to enzymatic hydrolysis have been studied. Optimised conditions leading to extensive saccharification of both cellulose (870 g kg,1 conversion) and hemicelluloses (845 g kg,1 conversion) were identified. Samples treated under selected operational conditions were employed for producing D -lactic acid by simultaneous saccharification and fermentation (SSF) in media containing cellulases, ,-glucosidase and Lactobacillus coryniformis ssp torquens cells. SSF fed-batch experiments led to D -lactic acid concentrations up to 23.4 g dm,3 at a product yield of 514 g lactic acid kg,1 of potential glucose and a volumetric productivity of 0.48 g dm,3 h,1. Copyright © 2004 Society of Chemical Industry [source] DECREASE IN DYNAMIC VISCOSITY AND AVERAGE MOLECULAR WEIGHT OF ALGINATE FROM LAMINARIA DIGITATA DURING ALKALINE EXTRACTION,JOURNAL OF PHYCOLOGY, Issue 2 2008Peggy Vauchel Alginates are natural polysaccharides that are extracted from brown seaweeds and widely used for their rheological properties. The central step in the extraction protocol used in the alginate industry is the alkaline extraction, which requires several hours. In this study, a significant decrease in alginate dynamic viscosity was observed after 2 h of alkaline treatment. Intrinsic viscosity and average molecular weight of alginates from alkaline extractions 1,4 h in duration were determined, indicating depolymerization of alginates: average molecular weight decreased significantly during the extraction, falling by a factor of 5 between 1 and 4 h of extraction. These results suggested that reducing extraction time could enable preserving the rheological properties of the extracted alginates. [source] Microwave-assisted extraction of the main phenolic compounds in flaxseedPHYTOCHEMICAL ANALYSIS, Issue 4 2007Vickram Beejmohun Abstract A microwave-assisted extraction (MAE) method has been applied for the first time to the extraction of the main lignan, secoisolariciresinol diglucoside (SDG), and the two most concentrated hydroxycinnamic acid glucosides in flaxseed. The effects of microwave power, extraction time and alkaline treatment were investigated. It was shown that a 3 min MAE resulted in an SDG content of 16.1 ± 0.4 mg/g, a p -coumaric acid glucoside content of 3.7 ± 0.2 mg/g and a ferulic acid glucoside content of 4.1 ± 0.2 mg/g. These values were compared with those obtained using conventional extraction methods and the results demonstrated that MAE was more effective in terms of both yield and time consumption. Copyright © 2007 John Wiley & Sons, Ltd. [source] Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for compositesPOLYMER COMPOSITES, Issue 2 2004Edgar García-Hernández Sugar cane bagasse fibers were modified by surface treatments using either physical or chemical methods in order to improve their adhesion to polystyrene matrices. The surface treatment methods used were alkaline treatment, treatment with silane coupling agents, physical coating with polystyrene and grafting of polystyrene with and without crosslinker. Fiber modifications were monitored by Fourier Transform Infrared Spectroscopy (FTIR), Differential Thermal Analysis coupled with Thermogravimetric Analysis (DTA-TGA) and Scanning Electron Microscopy (SEM). On the other hand, the improvement of the adhesion between sugar cane modified fibers and polystyrene was assessed by micromechanical pull-out and by macromechanical Iosipescu tests. It was found, from Interfacial Shear Strength values (IFSS), that substantial improvements in fiber-matrix compatibility were achieved. According to micro- and macromechanical test results, the IFSS increased for all treated fibers as compared to non-treated fibers. Particularly, both the coating the fibers or grafting with polystyrene using crosslinker resulted in substantial adhesion improvement to the polystyrene matrix in comparison with the non-treated fibers and fibers treated by alkaline and silane methods only. Polym. Compos. 25:134,145, 2004. © 2004 Society of Plastics Engineers. [source] Controlled Grafting of Poly(methyl methacrylate) Brushes on Poly(vinylidene fluoride) Powders by Surface-initiated Atom Transfer Radical PolymerizationCHINESE JOURNAL OF CHEMISTRY, Issue 2 2009Zhaoqi TANG Abstract Controlled grafting of well-defined polymer brushes of methyl methacrylate (MMA) on the poly(vinylidene fluoride) (PVDF) powders was carried out by the surface-initiated atom transfer radical polymerization (ATRP). The ATRP initiator was anchored on the PVDF surface by alkaline treatment, followed by UV-induced bromination; then methyl methacrylate (MMA) was grafted onto the brominated PVDF by the ATRP technique. The chemical composition changes of PVDF were characterized by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS results clearly indicated the successful graft of poly(methyl methacrylate) onto the PVDF surface. [source] |