Al2O3 Nanopore Sensors (al2o3 + nanopore_sensor)

Distribution by Scientific Domains


Selected Abstracts


Sensors: DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Mater.
R. Bashir and co-workers report on page 1266 the development of solid-state Al2O3 nanopore sensors with enhanced surface properties for the real-time detection and analysis of individual DNA molecules. The cover illustrates the extension of coiled double-stranded DNA in the high-field region surrounding a nanocrystalline Al2O3 nanopore, followed by DNA transport. Nanocrystallite nucleation during pore formation helps enhance the single-molecule sensitivity and surface-charge characteristics of these devices and enables the potential fabrication of nanometer-scale metallic contacts in the pore. This technology finds broad application in drug screening, medicine, and bio-nanotechnology. [source]


DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Bala Murali Venkatesan
Abstract A new solid-state, Al2O3 nanopore sensor with enhanced surface properties for the real-time detection and analysis of individual DNA molecules is reported. Nanopore formation using electron-beam-based decomposition transforms the local nanostructure and morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a heterophase crystalline network, deficient in O (O to Al ratio of ,0.6). Direct metallization of the pore region is observed during irradiation, thereby permitting the potential fabrication of nanoscale metallic contacts in the pore region with application to nanopore-based DNA sequencing. Dose-dependent phase transformations to purely , and/or ,-phase nanocrystallites are also observed during pore formation, allowing for surface-charge engineering at the nanopore/fluid interface. DNA transport studies reveal an order-of-magnitude reduction in translocation velocities relative to alternate solid-state architectures, accredited to high surface-charge density and the nucleation of charged nanocrystalline domains. The unique surface properties of Al2O3 nanopore sensors make them ideal for the detection and analysis of single-stranded DNA, double-stranded DNA, RNA secondary structures, and small proteins. These nanoscale sensors may also serve as useful tools in studying the mechanisms driving biological processes including DNA,protein interactions and enzyme activity at the single-molecule level. [source]


DNA Sensors: Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis (Adv. Mater.

ADVANCED MATERIALS, Issue 27 2009
27/2009)
A new solid state nanopore biosensor for the analysis of individual DNA molecules is reported by Rashid Bashir and co-workers on p. 2771. The cover illustrates the passage of double-stranded DNA through an Al2O3 nanopore sensor fabricated using ALD and e-beam-induced sputtering processes. Hexagonal ,-phase Al2O3 nanocrystallites form during pore formation as shown, improving the mechanical stability and sensitivity of these nanopore sensors. The CMOS-compatible nature of this process establishes this technology as a potential candidate for next-generation DNA sequencing. [source]


Sensors: DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Mater.
R. Bashir and co-workers report on page 1266 the development of solid-state Al2O3 nanopore sensors with enhanced surface properties for the real-time detection and analysis of individual DNA molecules. The cover illustrates the extension of coiled double-stranded DNA in the high-field region surrounding a nanocrystalline Al2O3 nanopore, followed by DNA transport. Nanocrystallite nucleation during pore formation helps enhance the single-molecule sensitivity and surface-charge characteristics of these devices and enables the potential fabrication of nanometer-scale metallic contacts in the pore. This technology finds broad application in drug screening, medicine, and bio-nanotechnology. [source]


DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Bala Murali Venkatesan
Abstract A new solid-state, Al2O3 nanopore sensor with enhanced surface properties for the real-time detection and analysis of individual DNA molecules is reported. Nanopore formation using electron-beam-based decomposition transforms the local nanostructure and morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a heterophase crystalline network, deficient in O (O to Al ratio of ,0.6). Direct metallization of the pore region is observed during irradiation, thereby permitting the potential fabrication of nanoscale metallic contacts in the pore region with application to nanopore-based DNA sequencing. Dose-dependent phase transformations to purely , and/or ,-phase nanocrystallites are also observed during pore formation, allowing for surface-charge engineering at the nanopore/fluid interface. DNA transport studies reveal an order-of-magnitude reduction in translocation velocities relative to alternate solid-state architectures, accredited to high surface-charge density and the nucleation of charged nanocrystalline domains. The unique surface properties of Al2O3 nanopore sensors make them ideal for the detection and analysis of single-stranded DNA, double-stranded DNA, RNA secondary structures, and small proteins. These nanoscale sensors may also serve as useful tools in studying the mechanisms driving biological processes including DNA,protein interactions and enzyme activity at the single-molecule level. [source]